
INTRODUCTION

The advantages of the railways as a mean of 
transport are indisputable. Contrary to road trans-
port, trains do not pollute the air to such a large 
extent, they relieve the roads by reducing traffi  c 
jams, and they are a safer and cheaper mean of 
transport than road vehicles [8]. Especially at lon-
ger distances - over 300 km - freight rail transport 
is cheaper than road transport. In Poland, but also 
in the European Union, which is very dependent 
on oil imports from third countries, one more fact 
speaks in favour of railways. Trains are powered 
by electricity [6], which may be mostly or even 
fully produced on the basis of domestic energy re-
sources - coal or renewable energy sources [14]. 
This cannot be said about motor fuels because 
there is still a long way to market dominance of 
cars with electric or hydrogen propulsion [12]. 
New solutions for energy saving and monitoring 
are used in the railway infrastructure as well as in 
the trains themselves [35, 36].

For all these reasons, the EU authorities have 
been emphasizing on the development of rail-
ways for years. In 2011, the European Commis-
sion already set a target for the Member States to 
transfer more than half of road freight transport 
over 300 km to other means of transport - mainly 
rail - by 2050.

This EU policy also results from the fact that 
in Western Europe for several decades (in Poland 
and Central and Eastern Europe from the 1990s), 
the railroad was in retreat [2, 22]. After the motor-
ization was popularized, the European preferred 
using their own cars rather than trains, and Eu-
ropean companies, transporting their goods, in-
creasingly chose more comfortable trucks instead 
of railways [5]. The truck is able to pick up the 
cargo from anywhere and deliver it to any place. 
The same cannot be said for the freight transport-
ed by trains, which usually have to be reloaded 
onto cars and then transported to their destination. 
This, in turn, not only extends the transport time, 
but also makes it more expensive [9].
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The effect is that in many countries the share 
of railways in the transport market has gradually 
decreased. Even Germany, one of the most pro-
ecological and pro-railway countries in the world, 
could not cope with it. In Poland, the share of rail-
ways in the transport of goods decreased at first 
and remained at the same level within the last de-
cade (18–19%) and only recently it has started to 
increase. Against this background, Poland is still 
conspicuous being one of the EU leaders in terms 
of the share of railways in freight transport. In 
our country, it amounts to 25.6 percent. However, 
it must not be forgotten that in 2005 it was 37% 
and, unfortunately, it continues to decline while 
the share of road transport is growing. For several 
years, the amount of goods transported by rail in 
Poland has been fluctuating and, basically, has 
not increased [4]. In 2017, this amount was 240 
million tonnes, i.e. as much as, for instance, in 
2009, but much less than in the years 2004–2008, 
when it reached 280–290 million tonnes per year, 
and then, for the following years, it would be 
maintained again at a much lower level (220–250 
million tons per year) [41].

It is also worth mentioning that in the years 
1990–2015, the railway in Poland experienced 
an evident collapse: its transport decreased by 
almost 40 percent during this time. An impor-
tant reason for this is the excessive transport 
rates, as well as the too slow average speed of 
freight trains in Poland and major timetable set-
backs [33]. This is due to the condition of the 
railway infrastructure and numerous railway 
investments are currently underway. Satellite 
navigation can also be used to manage rail trans-
port [39]. This can contribute to increasing the 
reliability of rail services [37]. Several countries 
from Eastern Europe have plans to develop their 
regional and international rail networks [43, 40]. 
These include Poland [41], Slovakia [21], the 
Czech Republic [38] and Hungary [43]. 

If the condition of the railway infrastructure 
improves in the future, the high rates for track use 
will remain [28]. In Poland, a model has been ad-
opted that the costs of maintaining the railway in-
frastructure are to be covered by the carriers who 
use it and pay for it. It’s a healthy model, how-
ever, the problem is that in order for more car-
riers to transport goods by rail instead of roads, 
incentives and facilitations are needed [5]. For 
example, after 1989, many sidings in Poland were 
liquidated, due to which trains could go directly 
to production plants [41].

Thus, a government program with incentives 
to restart these sidings and build new ones would 
be effective. In the case of resumption of opera-
tion of railway sidings it is necessary to determine 
the optimal organization of wagon transport [23]. 
The quality of the organization and technology of 
wagon transportation largely determines the at-
tractiveness of rail freight.

The railway has very good development 
prospects, as many Polish and foreign research 
institutions conduct research on computer-aided 
development of railway infrastructure [11] and 
diagnostics of existing railway connections [17, 
18] with the use of unmanned aerial vehicles [10]. 
More and more innovative solutions are being 
implemented on the railways, which increase its 
attractiveness [20, 34]. Innovative rail networks 
and innovative means of rail transport are being 
developed [42]. Increasing the safety of rail trans-
port is a very important area of research [30]. It 
also covers cybersecurity [26].

The issue of the optimal organization of wag-
on transport has been sufficiently and widely de-
scribed in many works [7, 21]. The system analy-
sis of this task, the complexity of its solution and 
the shortcomings of the existing methodologies 
are presented in [16].

It should be noted that all virtual solutions 
to this task are heuristic and do not provide op-
timality. Among the existing methods of select-
ing the optimal wagon transport organization, 
the absolute calculation method deserves special 
attention, as it played a key role in the develop-
ment of the theory and practice of wagon flow or-
ganization. This method presents a diagram of a 
complete review of possible solution and allows 
to determine the optimal solution while limiting 
the number of processing stations to 10.

The paper [16] presents the computer-orient-
ed approach in the search for the optimal plan of 
wagon flow organization for a large railway net-
work. However, it should be noted that in the ex-
isting methods of determining the optimal wagon 
transportation plan, there are no real limitations 
resulting from the number of station tracks and 
the processing capacity of the stations them-
selves. This leads to the necessity of adjusting 
the existing plans, which is an extremely difficult 
task due to its combinatorial nature.

In [15], the application of a mathematical 
model using linear programming with mixed in-
tegers was considered to solve the problem of 
vehicle route planning [27]. The model aims to 



Advances in Science and Technology Research Journal 2021, 15(4), 332–341

334

establish distribution routes from the distribu-
tion center to each customer in order to reduce 
the transport costs associated with these routes. 
The study took into account the use of a fleet 
of different capacity in the distribution network, 
which has the specific characteristics of a star 
network and which must meet various efficiency 
criteria [19], such as meeting the requirements 
of each customer, vehicle load capacity, work 
schedule, and sustainable usage of resources 
[24]. The idea is to find the right amount of 
equipment to meet the demand, and, thus, im-
prove the level of customer service, optimize the 
use of human and economic resources in the area 
of   distribution, and the maximum use of vehicle 
capacity [29]. A mathematical model for a case 
study of linear MILP programming with mixed 
integers was presented as well as a correspond-
ing numerical study.

The article [1] presents the issue of Railway 
Rescheduling Problem (RRP) as the problem of 
finding a new train timetable after one or sev-
eral events by minimizing a certain measure of 
this effect, e.g. total delay. In order to model 
this problem, two complementary formulations 
have been proposed: Mixed Integer Program-
ming (MIP) and constrained programming (CP). 
Due to the impossibility of solving real instances 
with standard solvers, several solution methods 
have been proposed: rescheduling the shift to 
the right; local search method based on MIP; 
Statistical Analysis of Propagation of Incidents 
(SAPI); and the CP approach.

The article [13] describes and develops a 
mathematical model of the distribution of empty 
wagons for loading at a railway junction. This 
model takes into account the requirements of 
wagon owners in terms of the use of their wag-
ons, the level of operation of the railway stations 
of the transport node and the possibility of add-
ing groups of empty wagons to interchange [31], 
cleaning and industrial trains running on a tight 
schedule. The developed model and software 
package were implemented in the IT system of 
the industrial railway of the large metallurgi-
cal company OJSC «Magnitogorsk Metallurgi-
cal Works», which supports up to two thousand 
wagons belonging to different owners. This 
model made it possible to reduce the workload 
of dispatching operations planning the distribu-
tion of empty wagons for loading and to reduce 
the total time spent by wagons in the company’s 
railway system.

Typically, models of wagonload freight trans-
port plans are deterministic ones. The determin-
istic models require precise information on what 
values all the parameters of a task will take in a 
future period for which the optimal railroad block-
ing (train formation) plan is being developed.

A statistical deterministic model has limited 
application because the execution of rail transport 
activities may differ from previously adopted as-
sumptions. Moreover, models of optimal wagon 
flow management with exact parameter values 
may turn out to be highly “approximate”, because 
very often the data are not the parameters them-
selves but sets of possible parameter values [32]. 
For this reason, it is more practical to look for op-
timal decisions by assigning possible values rath-
er than specific numbers to parameters. The topic 
of wagon flow management under relative uncer-
tainty has barely been explored in the literature on 
wagonload freight transport planning [25]. 

In this present study, a branch-and-bound al-
gorithm was used to search for an optimal rail-
road blocking plan, with parameters given as in-
terval values and simultaneous minimization of 
the objective function.

MATHEMATICAL MODEL 
OF THE PROBLEM

It was assumed that the daily flows of wagons 
Pij (i, j = 1÷n where i – departure station, j – ar-
rival station) are given by an fuzzy interval type 
(L–R) in some (non-empty) space u. This type of 
interval is a parametric representation of a fuzzy 
interval with an upper semi-continuous member-
ship function, and it is a combination of two types 
of function R* → [0,1], marked with the letters L 
and R. L is an upper semi-continuous decreasing 
function, which satisfies the following conditions: 

1 
 

𝐿𝐿(0) = 1, and also ∀𝑢𝑢 > 0, 𝐿𝐿(𝑢𝑢) < 1 ∀𝑢𝑢 < 1, 𝐿𝐿(𝑢𝑢) > 0, 
𝐿𝐿 = 0 or 𝐿𝐿(𝑢𝑢) > 0, ∀𝑢𝑢   𝑎𝑎𝑎𝑎𝑎𝑎     𝐿𝐿(+∞) = 0 

𝜇𝜇𝑝𝑝(𝑢𝑢) =

{
 
 
 
 𝐿𝐿 (

𝑚𝑚 − 𝑢𝑢
𝛼𝛼 )  𝑖𝑖𝑖𝑖 𝑢𝑢 ≤ 𝑚𝑚

1 𝑖𝑖𝑖𝑖 𝑚𝑚 ≤ 𝑢𝑢 ≤ 𝑚𝑚

𝑅𝑅 (𝑢𝑢 −𝑚𝑚𝛽𝛽 )  𝑖𝑖𝑖𝑖 𝑢𝑢 ≥ 𝑚𝑚
 

                                                                      𝑇𝑇𝑖𝑖𝑖𝑖 = ∑ 𝑡𝑡𝑖𝑖𝑖𝑖𝑖𝑖∈𝑀𝑀𝑖𝑖𝑖𝑖
𝑖𝑖≠𝑖𝑖

; 

 𝐹𝐹(𝑎𝑎𝑖𝑖𝑖𝑖) =∑((𝑐𝑐𝑚𝑚)𝑖𝑖𝑖𝑖𝑎𝑎𝑖𝑖𝑖𝑖 + 𝑃𝑃𝑖𝑖𝑖𝑖𝑡𝑡𝑖𝑖𝑖𝑖𝛴𝛴 (𝑎𝑎𝑖𝑖𝑖𝑖)) → min
{𝑛𝑛𝑖𝑖𝑖𝑖}

  (1) 

 

𝑎𝑎𝑖𝑖𝑖𝑖 = {1 if OD pair (𝑖𝑖, 𝑗𝑗) exists0 otherwise  

 

 𝜆𝜆𝑆𝑆𝑘𝑘 = 𝜆𝜆(𝐺𝐺𝑆𝑆𝑘𝑘) =∑(𝑐𝑐𝑚𝑚)𝑖𝑖𝑖𝑖𝑎𝑎𝑖𝑖𝑖𝑖(𝑁𝑁𝑆𝑆(𝑘𝑘)𝑘𝑘 ) +∑𝑃𝑃𝑖𝑖𝑖𝑖
𝑖𝑖,𝑖𝑖𝑖𝑖,𝑖𝑖

𝑡𝑡𝑖𝑖𝑖𝑖𝛴𝛴 (𝑁𝑁𝑆𝑆(𝑘𝑘)𝑘𝑘 ∪ �̃�𝑁𝑆𝑆(𝑘𝑘)𝑘𝑘 ) (2) 

 

 𝐹𝐹 (𝑁𝑁𝑆𝑆(𝑘𝑘)𝑘𝑘 ∪ (𝑖𝑖, 𝑗𝑗)) ≻ 𝐹𝐹(𝑁𝑁𝑆𝑆(𝑘𝑘)𝑘𝑘 ) (3) 

 

1). 𝐵𝐵𝑀𝑀([𝑁𝑁,+∞)) = 𝐵𝐵(𝑋𝑋 ≥ 𝑌𝑌) = 𝑠𝑠𝑢𝑢𝑠𝑠
𝑢𝑢
𝑚𝑚𝑖𝑖𝑎𝑎
 (𝜇𝜇𝑀𝑀(𝑢𝑢),

𝑠𝑠𝑢𝑢𝑠𝑠
𝑣𝑣 ≤ 𝑢𝑢(𝑣𝑣)) =

= 𝑠𝑠𝑢𝑢𝑠𝑠
𝑢𝑢 ≥ 𝑣𝑣

𝑚𝑚𝑖𝑖𝑎𝑎
 (𝜇𝜇𝑀𝑀(𝑢𝑢), 𝜇𝜇𝑁𝑁(𝑣𝑣))   

(4) 

 

2). 𝐵𝐵𝑀𝑀((𝑁𝑁,+∞)) = 𝐵𝐵(𝑋𝑋 > 𝑌𝑌) = 𝑠𝑠𝑢𝑢𝑠𝑠𝑢𝑢
𝑚𝑚𝑖𝑖𝑎𝑎
 (𝜇𝜇𝑀𝑀(𝑢𝑢), 𝑖𝑖𝑎𝑎𝑖𝑖(1 − 𝜇𝜇𝑁𝑁(𝑣𝑣))) =

= 𝑠𝑠𝑢𝑢𝑠𝑠𝑢𝑢
𝑖𝑖𝑎𝑎𝑖𝑖
𝑣𝑣 > 𝑢𝑢

𝑚𝑚𝑖𝑖𝑎𝑎
 (𝜇𝜇𝑀𝑀(𝑢𝑢), 𝜇𝜇𝑁𝑁(𝑣𝑣))   

(5) 

 

3). 𝐻𝐻𝑀𝑀([𝑁𝑁,+∞)) = 𝐻𝐻(𝑋𝑋 ≥ 𝑌𝑌) = 𝑖𝑖𝑎𝑎𝑖𝑖𝑢𝑢
𝑚𝑚𝑎𝑎𝑚𝑚
 (1 − 𝜇𝜇𝑀𝑀(𝑢𝑢),

𝑠𝑠𝑢𝑢𝑠𝑠
𝑣𝑣 ≤ 𝑢𝑢𝜇𝜇𝑁𝑁(𝑣𝑣)) =

= 𝑖𝑖𝑎𝑎𝑖𝑖𝑢𝑢
𝑠𝑠𝑢𝑢𝑠𝑠
𝑢𝑢 ≤ 𝑣𝑣

𝑚𝑚𝑎𝑎𝑚𝑚
 (1 − 𝜇𝜇𝑀𝑀(𝑢𝑢), 𝜇𝜇𝑁𝑁(𝑣𝑣))   

(6) 

 

4). 𝐻𝐻𝑀𝑀((𝑁𝑁, +∞)) = 𝐻𝐻(𝑋𝑋 > 𝑌𝑌) = 𝑖𝑖𝑎𝑎𝑖𝑖𝑢𝑢
𝑚𝑚𝑎𝑎𝑚𝑚
 (1 − 𝜇𝜇𝑀𝑀(𝑢𝑢), 𝑖𝑖𝑎𝑎𝑖𝑖(1 − 𝜇𝜇𝑁𝑁(𝑣𝑣))) =

= 1 − 𝑠𝑠𝑢𝑢𝑠𝑠
𝑢𝑢 ≤ 𝑣𝑣

𝑚𝑚𝑖𝑖𝑎𝑎
 (𝜇𝜇𝑀𝑀(𝑢𝑢), 𝜇𝜇𝑁𝑁(𝑣𝑣))   

(7) 

 

 

An L-function (or an R-function) that satis-
fies these conditions is called a form function. 
The membership function of a fuzzy interval M 
can be represented by two functions, L and R, and 
four parameters: (

1 
 

𝐿𝐿(0) = 1, and also ∀𝑢𝑢 > 0, 𝐿𝐿(𝑢𝑢) < 1 ∀𝑢𝑢 < 1, 𝐿𝐿(𝑢𝑢) > 0, 
𝐿𝐿 = 0 or 𝐿𝐿(𝑢𝑢) > 0, ∀𝑢𝑢   𝑎𝑎𝑎𝑎𝑎𝑎     𝐿𝐿(+∞) = 0 

𝜇𝜇𝑝𝑝(𝑢𝑢) =

{
 
 
 
 𝐿𝐿 (

𝑚𝑚 − 𝑢𝑢
𝛼𝛼 )  𝑖𝑖𝑖𝑖 𝑢𝑢 ≤ 𝑚𝑚

1 𝑖𝑖𝑖𝑖 𝑚𝑚 ≤ 𝑢𝑢 ≤ 𝑚𝑚

𝑅𝑅 (𝑢𝑢 −𝑚𝑚𝛽𝛽 )  𝑖𝑖𝑖𝑖 𝑢𝑢 ≥ 𝑚𝑚
 

                                                                      𝑇𝑇𝑖𝑖𝑖𝑖 = ∑ 𝑡𝑡𝑖𝑖𝑖𝑖𝑖𝑖∈𝑀𝑀𝑖𝑖𝑖𝑖
𝑖𝑖≠𝑖𝑖

; 

 𝐹𝐹(𝑎𝑎𝑖𝑖𝑖𝑖) =∑((𝑐𝑐𝑚𝑚)𝑖𝑖𝑖𝑖𝑎𝑎𝑖𝑖𝑖𝑖 + 𝑃𝑃𝑖𝑖𝑖𝑖𝑡𝑡𝑖𝑖𝑖𝑖𝛴𝛴 (𝑎𝑎𝑖𝑖𝑖𝑖)) → min
{𝑛𝑛𝑖𝑖𝑖𝑖}

  (1) 

 

𝑎𝑎𝑖𝑖𝑖𝑖 = {1 if OD pair (𝑖𝑖, 𝑗𝑗) exists0 otherwise  

 

 𝜆𝜆𝑆𝑆𝑘𝑘 = 𝜆𝜆(𝐺𝐺𝑆𝑆𝑘𝑘) =∑(𝑐𝑐𝑚𝑚)𝑖𝑖𝑖𝑖𝑎𝑎𝑖𝑖𝑖𝑖(𝑁𝑁𝑆𝑆(𝑘𝑘)𝑘𝑘 ) +∑𝑃𝑃𝑖𝑖𝑖𝑖
𝑖𝑖,𝑖𝑖𝑖𝑖,𝑖𝑖

𝑡𝑡𝑖𝑖𝑖𝑖𝛴𝛴 (𝑁𝑁𝑆𝑆(𝑘𝑘)𝑘𝑘 ∪ �̃�𝑁𝑆𝑆(𝑘𝑘)𝑘𝑘 ) (2) 

 

 𝐹𝐹 (𝑁𝑁𝑆𝑆(𝑘𝑘)𝑘𝑘 ∪ (𝑖𝑖, 𝑗𝑗)) ≻ 𝐹𝐹(𝑁𝑁𝑆𝑆(𝑘𝑘)𝑘𝑘 ) (3) 

 

1). 𝐵𝐵𝑀𝑀([𝑁𝑁,+∞)) = 𝐵𝐵(𝑋𝑋 ≥ 𝑌𝑌) = 𝑠𝑠𝑢𝑢𝑠𝑠
𝑢𝑢
𝑚𝑚𝑖𝑖𝑎𝑎
 (𝜇𝜇𝑀𝑀(𝑢𝑢),

𝑠𝑠𝑢𝑢𝑠𝑠
𝑣𝑣 ≤ 𝑢𝑢(𝑣𝑣)) =

= 𝑠𝑠𝑢𝑢𝑠𝑠
𝑢𝑢 ≥ 𝑣𝑣

𝑚𝑚𝑖𝑖𝑎𝑎
 (𝜇𝜇𝑀𝑀(𝑢𝑢), 𝜇𝜇𝑁𝑁(𝑣𝑣))   

(4) 

 

2). 𝐵𝐵𝑀𝑀((𝑁𝑁,+∞)) = 𝐵𝐵(𝑋𝑋 > 𝑌𝑌) = 𝑠𝑠𝑢𝑢𝑠𝑠𝑢𝑢
𝑚𝑚𝑖𝑖𝑎𝑎
 (𝜇𝜇𝑀𝑀(𝑢𝑢), 𝑖𝑖𝑎𝑎𝑖𝑖(1 − 𝜇𝜇𝑁𝑁(𝑣𝑣))) =

= 𝑠𝑠𝑢𝑢𝑠𝑠𝑢𝑢
𝑖𝑖𝑎𝑎𝑖𝑖
𝑣𝑣 > 𝑢𝑢

𝑚𝑚𝑖𝑖𝑎𝑎
 (𝜇𝜇𝑀𝑀(𝑢𝑢), 𝜇𝜇𝑁𝑁(𝑣𝑣))   

(5) 

 

3). 𝐻𝐻𝑀𝑀([𝑁𝑁,+∞)) = 𝐻𝐻(𝑋𝑋 ≥ 𝑌𝑌) = 𝑖𝑖𝑎𝑎𝑖𝑖𝑢𝑢
𝑚𝑚𝑎𝑎𝑚𝑚
 (1 − 𝜇𝜇𝑀𝑀(𝑢𝑢),

𝑠𝑠𝑢𝑢𝑠𝑠
𝑣𝑣 ≤ 𝑢𝑢𝜇𝜇𝑁𝑁(𝑣𝑣)) =

= 𝑖𝑖𝑎𝑎𝑖𝑖𝑢𝑢
𝑠𝑠𝑢𝑢𝑠𝑠
𝑢𝑢 ≤ 𝑣𝑣

𝑚𝑚𝑎𝑎𝑚𝑚
 (1 − 𝜇𝜇𝑀𝑀(𝑢𝑢), 𝜇𝜇𝑁𝑁(𝑣𝑣))   

(6) 

 

4). 𝐻𝐻𝑀𝑀((𝑁𝑁, +∞)) = 𝐻𝐻(𝑋𝑋 > 𝑌𝑌) = 𝑖𝑖𝑎𝑎𝑖𝑖𝑢𝑢
𝑚𝑚𝑎𝑎𝑚𝑚
 (1 − 𝜇𝜇𝑀𝑀(𝑢𝑢), 𝑖𝑖𝑎𝑎𝑖𝑖(1 − 𝜇𝜇𝑁𝑁(𝑣𝑣))) =

= 1 − 𝑠𝑠𝑢𝑢𝑠𝑠
𝑢𝑢 ≤ 𝑣𝑣

𝑚𝑚𝑖𝑖𝑎𝑎
 (𝜇𝜇𝑀𝑀(𝑢𝑢), 𝜇𝜇𝑁𝑁(𝑣𝑣))   

(7) 

 

 

,

1 
 

𝐿𝐿(0) = 1, and also ∀𝑢𝑢 > 0, 𝐿𝐿(𝑢𝑢) < 1 ∀𝑢𝑢 < 1, 𝐿𝐿(𝑢𝑢) > 0, 
𝐿𝐿 = 0 or 𝐿𝐿(𝑢𝑢) > 0, ∀𝑢𝑢   𝑎𝑎𝑎𝑎𝑎𝑎     𝐿𝐿(+∞) = 0 

𝜇𝜇𝑝𝑝(𝑢𝑢) =

{
 
 
 
 𝐿𝐿 (

𝑚𝑚 − 𝑢𝑢
𝛼𝛼 )  𝑖𝑖𝑖𝑖 𝑢𝑢 ≤ 𝑚𝑚

1 𝑖𝑖𝑖𝑖 𝑚𝑚 ≤ 𝑢𝑢 ≤ 𝑚𝑚

𝑅𝑅 (𝑢𝑢 −𝑚𝑚𝛽𝛽 )  𝑖𝑖𝑖𝑖 𝑢𝑢 ≥ 𝑚𝑚
 

                                                                      𝑇𝑇𝑖𝑖𝑖𝑖 = ∑ 𝑡𝑡𝑖𝑖𝑖𝑖𝑖𝑖∈𝑀𝑀𝑖𝑖𝑖𝑖
𝑖𝑖≠𝑖𝑖

; 

 𝐹𝐹(𝑎𝑎𝑖𝑖𝑖𝑖) =∑((𝑐𝑐𝑚𝑚)𝑖𝑖𝑖𝑖𝑎𝑎𝑖𝑖𝑖𝑖 + 𝑃𝑃𝑖𝑖𝑖𝑖𝑡𝑡𝑖𝑖𝑖𝑖𝛴𝛴 (𝑎𝑎𝑖𝑖𝑖𝑖)) → min
{𝑛𝑛𝑖𝑖𝑖𝑖}

  (1) 

 

𝑎𝑎𝑖𝑖𝑖𝑖 = {1 if OD pair (𝑖𝑖, 𝑗𝑗) exists0 otherwise  

 

 𝜆𝜆𝑆𝑆𝑘𝑘 = 𝜆𝜆(𝐺𝐺𝑆𝑆𝑘𝑘) =∑(𝑐𝑐𝑚𝑚)𝑖𝑖𝑖𝑖𝑎𝑎𝑖𝑖𝑖𝑖(𝑁𝑁𝑆𝑆(𝑘𝑘)𝑘𝑘 ) +∑𝑃𝑃𝑖𝑖𝑖𝑖
𝑖𝑖,𝑖𝑖𝑖𝑖,𝑖𝑖

𝑡𝑡𝑖𝑖𝑖𝑖𝛴𝛴 (𝑁𝑁𝑆𝑆(𝑘𝑘)𝑘𝑘 ∪ �̃�𝑁𝑆𝑆(𝑘𝑘)𝑘𝑘 ) (2) 

 

 𝐹𝐹 (𝑁𝑁𝑆𝑆(𝑘𝑘)𝑘𝑘 ∪ (𝑖𝑖, 𝑗𝑗)) ≻ 𝐹𝐹(𝑁𝑁𝑆𝑆(𝑘𝑘)𝑘𝑘 ) (3) 

 

1). 𝐵𝐵𝑀𝑀([𝑁𝑁,+∞)) = 𝐵𝐵(𝑋𝑋 ≥ 𝑌𝑌) = 𝑠𝑠𝑢𝑢𝑠𝑠
𝑢𝑢
𝑚𝑚𝑖𝑖𝑎𝑎
 (𝜇𝜇𝑀𝑀(𝑢𝑢),

𝑠𝑠𝑢𝑢𝑠𝑠
𝑣𝑣 ≤ 𝑢𝑢(𝑣𝑣)) =

= 𝑠𝑠𝑢𝑢𝑠𝑠
𝑢𝑢 ≥ 𝑣𝑣

𝑚𝑚𝑖𝑖𝑎𝑎
 (𝜇𝜇𝑀𝑀(𝑢𝑢), 𝜇𝜇𝑁𝑁(𝑣𝑣))   

(4) 

 

2). 𝐵𝐵𝑀𝑀((𝑁𝑁,+∞)) = 𝐵𝐵(𝑋𝑋 > 𝑌𝑌) = 𝑠𝑠𝑢𝑢𝑠𝑠𝑢𝑢
𝑚𝑚𝑖𝑖𝑎𝑎
 (𝜇𝜇𝑀𝑀(𝑢𝑢), 𝑖𝑖𝑎𝑎𝑖𝑖(1 − 𝜇𝜇𝑁𝑁(𝑣𝑣))) =

= 𝑠𝑠𝑢𝑢𝑠𝑠𝑢𝑢
𝑖𝑖𝑎𝑎𝑖𝑖
𝑣𝑣 > 𝑢𝑢

𝑚𝑚𝑖𝑖𝑎𝑎
 (𝜇𝜇𝑀𝑀(𝑢𝑢), 𝜇𝜇𝑁𝑁(𝑣𝑣))   

(5) 

 

3). 𝐻𝐻𝑀𝑀([𝑁𝑁,+∞)) = 𝐻𝐻(𝑋𝑋 ≥ 𝑌𝑌) = 𝑖𝑖𝑎𝑎𝑖𝑖𝑢𝑢
𝑚𝑚𝑎𝑎𝑚𝑚
 (1 − 𝜇𝜇𝑀𝑀(𝑢𝑢),

𝑠𝑠𝑢𝑢𝑠𝑠
𝑣𝑣 ≤ 𝑢𝑢𝜇𝜇𝑁𝑁(𝑣𝑣)) =

= 𝑖𝑖𝑎𝑎𝑖𝑖𝑢𝑢
𝑠𝑠𝑢𝑢𝑠𝑠
𝑢𝑢 ≤ 𝑣𝑣

𝑚𝑚𝑎𝑎𝑚𝑚
 (1 − 𝜇𝜇𝑀𝑀(𝑢𝑢), 𝜇𝜇𝑁𝑁(𝑣𝑣))   

(6) 

 

4). 𝐻𝐻𝑀𝑀((𝑁𝑁, +∞)) = 𝐻𝐻(𝑋𝑋 > 𝑌𝑌) = 𝑖𝑖𝑎𝑎𝑖𝑖𝑢𝑢
𝑚𝑚𝑎𝑎𝑚𝑚
 (1 − 𝜇𝜇𝑀𝑀(𝑢𝑢), 𝑖𝑖𝑎𝑎𝑖𝑖(1 − 𝜇𝜇𝑁𝑁(𝑣𝑣))) =

= 1 − 𝑠𝑠𝑢𝑢𝑠𝑠
𝑢𝑢 ≤ 𝑣𝑣

𝑚𝑚𝑖𝑖𝑎𝑎
 (𝜇𝜇𝑀𝑀(𝑢𝑢), 𝜇𝜇𝑁𝑁(𝑣𝑣))   

(7) 

 

 

) ∈ R2 – kernel of fuzzy 
interval (Fig. 1 and 2) and a, b ≥ 0 – left and right 
fuzziness coefficients, given by: 
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1 
 

𝐿𝐿(0) = 1, and also ∀𝑢𝑢 > 0, 𝐿𝐿(𝑢𝑢) < 1 ∀𝑢𝑢 < 1, 𝐿𝐿(𝑢𝑢) > 0, 
𝐿𝐿 = 0 or 𝐿𝐿(𝑢𝑢) > 0, ∀𝑢𝑢   𝑎𝑎𝑎𝑎𝑎𝑎     𝐿𝐿(+∞) = 0 

𝜇𝜇𝑝𝑝(𝑢𝑢) =

{
 
 
 
 𝐿𝐿 (

𝑚𝑚 − 𝑢𝑢
𝛼𝛼 )  𝑖𝑖𝑖𝑖 𝑢𝑢 ≤ 𝑚𝑚

1 𝑖𝑖𝑖𝑖 𝑚𝑚 ≤ 𝑢𝑢 ≤ 𝑚𝑚

𝑅𝑅 (𝑢𝑢 −𝑚𝑚𝛽𝛽 )  𝑖𝑖𝑖𝑖 𝑢𝑢 ≥ 𝑚𝑚
 

                                                                      𝑇𝑇𝑖𝑖𝑖𝑖 = ∑ 𝑡𝑡𝑖𝑖𝑖𝑖𝑖𝑖∈𝑀𝑀𝑖𝑖𝑖𝑖
𝑖𝑖≠𝑖𝑖

; 

 𝐹𝐹(𝑎𝑎𝑖𝑖𝑖𝑖) =∑((𝑐𝑐𝑚𝑚)𝑖𝑖𝑖𝑖𝑎𝑎𝑖𝑖𝑖𝑖 + 𝑃𝑃𝑖𝑖𝑖𝑖𝑡𝑡𝑖𝑖𝑖𝑖𝛴𝛴 (𝑎𝑎𝑖𝑖𝑖𝑖)) → min
{𝑛𝑛𝑖𝑖𝑖𝑖}

  (1) 

 

𝑎𝑎𝑖𝑖𝑖𝑖 = {1 if OD pair (𝑖𝑖, 𝑗𝑗) exists0 otherwise  

 

 𝜆𝜆𝑆𝑆𝑘𝑘 = 𝜆𝜆(𝐺𝐺𝑆𝑆𝑘𝑘) =∑(𝑐𝑐𝑚𝑚)𝑖𝑖𝑖𝑖𝑎𝑎𝑖𝑖𝑖𝑖(𝑁𝑁𝑆𝑆(𝑘𝑘)𝑘𝑘 ) +∑𝑃𝑃𝑖𝑖𝑖𝑖
𝑖𝑖,𝑖𝑖𝑖𝑖,𝑖𝑖

𝑡𝑡𝑖𝑖𝑖𝑖𝛴𝛴 (𝑁𝑁𝑆𝑆(𝑘𝑘)𝑘𝑘 ∪ �̃�𝑁𝑆𝑆(𝑘𝑘)𝑘𝑘 ) (2) 

 

 𝐹𝐹 (𝑁𝑁𝑆𝑆(𝑘𝑘)𝑘𝑘 ∪ (𝑖𝑖, 𝑗𝑗)) ≻ 𝐹𝐹(𝑁𝑁𝑆𝑆(𝑘𝑘)𝑘𝑘 ) (3) 

 

1). 𝐵𝐵𝑀𝑀([𝑁𝑁,+∞)) = 𝐵𝐵(𝑋𝑋 ≥ 𝑌𝑌) = 𝑠𝑠𝑢𝑢𝑠𝑠
𝑢𝑢
𝑚𝑚𝑖𝑖𝑎𝑎
 (𝜇𝜇𝑀𝑀(𝑢𝑢),

𝑠𝑠𝑢𝑢𝑠𝑠
𝑣𝑣 ≤ 𝑢𝑢(𝑣𝑣)) =

= 𝑠𝑠𝑢𝑢𝑠𝑠
𝑢𝑢 ≥ 𝑣𝑣

𝑚𝑚𝑖𝑖𝑎𝑎
 (𝜇𝜇𝑀𝑀(𝑢𝑢), 𝜇𝜇𝑁𝑁(𝑣𝑣))   

(4) 

 

2). 𝐵𝐵𝑀𝑀((𝑁𝑁,+∞)) = 𝐵𝐵(𝑋𝑋 > 𝑌𝑌) = 𝑠𝑠𝑢𝑢𝑠𝑠𝑢𝑢
𝑚𝑚𝑖𝑖𝑎𝑎
 (𝜇𝜇𝑀𝑀(𝑢𝑢), 𝑖𝑖𝑎𝑎𝑖𝑖(1 − 𝜇𝜇𝑁𝑁(𝑣𝑣))) =

= 𝑠𝑠𝑢𝑢𝑠𝑠𝑢𝑢
𝑖𝑖𝑎𝑎𝑖𝑖
𝑣𝑣 > 𝑢𝑢

𝑚𝑚𝑖𝑖𝑎𝑎
 (𝜇𝜇𝑀𝑀(𝑢𝑢), 𝜇𝜇𝑁𝑁(𝑣𝑣))   

(5) 

 

3). 𝐻𝐻𝑀𝑀([𝑁𝑁,+∞)) = 𝐻𝐻(𝑋𝑋 ≥ 𝑌𝑌) = 𝑖𝑖𝑎𝑎𝑖𝑖𝑢𝑢
𝑚𝑚𝑎𝑎𝑚𝑚
 (1 − 𝜇𝜇𝑀𝑀(𝑢𝑢),

𝑠𝑠𝑢𝑢𝑠𝑠
𝑣𝑣 ≤ 𝑢𝑢𝜇𝜇𝑁𝑁(𝑣𝑣)) =

= 𝑖𝑖𝑎𝑎𝑖𝑖𝑢𝑢
𝑠𝑠𝑢𝑢𝑠𝑠
𝑢𝑢 ≤ 𝑣𝑣

𝑚𝑚𝑎𝑎𝑚𝑚
 (1 − 𝜇𝜇𝑀𝑀(𝑢𝑢), 𝜇𝜇𝑁𝑁(𝑣𝑣))   

(6) 

 

4). 𝐻𝐻𝑀𝑀((𝑁𝑁, +∞)) = 𝐻𝐻(𝑋𝑋 > 𝑌𝑌) = 𝑖𝑖𝑎𝑎𝑖𝑖𝑢𝑢
𝑚𝑚𝑎𝑎𝑚𝑚
 (1 − 𝜇𝜇𝑀𝑀(𝑢𝑢), 𝑖𝑖𝑎𝑎𝑖𝑖(1 − 𝜇𝜇𝑁𝑁(𝑣𝑣))) =

= 1 − 𝑠𝑠𝑢𝑢𝑠𝑠
𝑢𝑢 ≤ 𝑣𝑣

𝑚𝑚𝑖𝑖𝑎𝑎
 (𝜇𝜇𝑀𝑀(𝑢𝑢), 𝜇𝜇𝑁𝑁(𝑣𝑣))   

(7) 

 

 

It is convenient to divide wagon flows into two 
classes depending on their size. A first class con-
sists of small flows, including null flows, i.e Pij = 
0. A second class encompasses large flows, i.e. Pij 
≠ 0. Thus, a wagon flow Pij can be represented as 
an (L – R) fuzzy interval of the following type: Pij 
= 

 

An L-function (or an R-function) that satisfies these conditions is called a form function. The 
membership function of a fuzzy interval M can be represented by two functions, L and R, and four 
parameters: (𝑚𝑚,𝑚𝑚) ∈ 𝑅𝑅2 – kernel of fuzzy interval (fig. 1 and 2) and 𝛼𝛼, 𝛽𝛽 ≥ 0 – left and right fuzziness 
coefficients, given by:  

𝜇𝜇𝑝𝑝(𝑢𝑢) =

{
 
 
 
 𝐿𝐿 (

𝑚𝑚 − 𝑢𝑢
𝛼𝛼 )  𝑖𝑖𝑖𝑖 𝑢𝑢 ≤ 𝑚𝑚

1 𝑖𝑖𝑖𝑖 𝑚𝑚 ≤ 𝑢𝑢 ≤ 𝑚𝑚

𝑅𝑅(𝑢𝑢 −𝑚𝑚𝛽𝛽 )  𝑖𝑖𝑖𝑖 𝑢𝑢 ≥ 𝑚𝑚
 

It is convenient to divide wagon flows into two classes depending on their size. A first class consists of 
small flows, including null flows, i.e. 𝑃𝑃𝑖𝑖𝑖𝑖 = 0. A second class encompasses large flows, i.e. 𝑃𝑃𝑖𝑖𝑖𝑖 ≠ 0. 
Thus, a wagon flow 𝑃𝑃𝑖𝑖𝑖𝑖 can be represented as an (L – R) fuzzy interval of the following type: 𝑃𝑃𝑖𝑖𝑖𝑖 =
(𝑚𝑚,𝑚𝑚, 𝛼𝛼, 𝛽𝛽)𝐿𝐿𝐿𝐿. The functions L and R are of the form 𝐿𝐿 (𝑚𝑚−𝑢𝑢𝛼𝛼 ) = 1 − (1 − ℎ) (𝑚𝑚−𝑢𝑢𝛼𝛼 ) if 0 ≤ 𝑢𝑢 ≤ 𝑚𝑚, 

where h is the degree of likelihood that a given wagon flow 𝑁𝑁𝑖𝑖𝑖𝑖 = 0; 0 ≤ ℎ ≤ 1; 𝑅𝑅 (𝑢𝑢−𝑚𝑚𝛽𝛽 ) = 1 − (𝑢𝑢−𝑚𝑚𝛽𝛽 ) 
if 𝑢𝑢 ≥ 𝑚𝑚. Fuzzy first and second-class wagon flows are shown in Figures 1 and 2. 
 
For the first class of wagons it is assumed that ℎ = 0. Let the shortest route between two vertices of 
graph G be denoted by 𝑀𝑀𝑖𝑖𝑖𝑖. 
In this study, wagon flow size is expressed as an interval to take account of real-life instability of and 
fluctuations in railroad freight volumes. Wagon-hour savings for one wagon moved from station i 
through station j without processing is also shown as an (L – R) fuzzy interval with a kernel of most 
feasible values for a given station 𝑡𝑡𝑖𝑖𝑖𝑖 = (𝑡𝑡, 𝑡𝑡, 𝛼𝛼, 𝛽𝛽)𝐿𝐿𝐿𝐿. It is also assumed that 𝑡𝑡𝑖𝑖𝑖𝑖 = 0, i.e. 𝑡𝑡𝑖𝑖𝑖𝑖 is a real 
number belonging to R. Then 𝑡𝑡𝑖𝑖𝑖𝑖 = (0, 0, 0, 0)𝐿𝐿𝐿𝐿, ∀𝐿𝐿, 𝑅𝑅. 
Wagon-hour accumulation (𝑐𝑐𝑚𝑚)𝑖𝑖𝑖𝑖 related to assembling, on station i, a train serving one origin-
destination (OD) pair and travelling towards station j is also given by an (L – R) fuzzy interval. It is 
known that (𝑐𝑐𝑚𝑚)𝑖𝑖𝑖𝑖 = (𝑐𝑐𝑚𝑚)𝑖𝑖𝑝𝑝, where (𝑖𝑖, 𝑝𝑝) – first arc of route 𝑀𝑀𝑖𝑖𝑖𝑖.  
Savings 𝑇𝑇𝑖𝑖𝑖𝑖 associated with the movement of one wagon without processing, when the OD pair (𝑖𝑖, 𝑗𝑗) is 
singled out (branched off): 
 𝑇𝑇𝑖𝑖𝑖𝑖 = ∑ 𝑡𝑡𝑖𝑖𝐿𝐿𝐿𝐿∈𝑀𝑀𝑖𝑖𝑖𝑖

𝐿𝐿≠𝑖𝑖
; 

here, the sum applies to all stations located on the shortest route 𝑀𝑀𝑖𝑖𝑖𝑖 between stations i and j, and is 
calculated as a sum of fuzzy numbers. 
A sum of two (L–R) fuzzy intervals 𝑀𝑀 = (𝑚𝑚,𝑚𝑚,𝛼𝛼, 𝛽𝛽)𝐿𝐿𝐿𝐿 and 𝑁𝑁 = (𝑛𝑛, 𝑛𝑛, 𝛾𝛾, 𝛿𝛿)𝐿𝐿𝐿𝐿 is of the following form 
[1,3,4,5]: 𝑀𝑀+𝑁𝑁 = (𝑚𝑚 + 𝑛𝑛,𝑚𝑚 + 𝑛𝑛, 𝛼𝛼 + 𝛾𝛾, 𝛽𝛽 + 𝛿𝛿)𝐿𝐿𝐿𝐿. Given this, savings 𝑇𝑇𝑖𝑖𝑖𝑖 associated with the 
movement of one wagon, without processing, when the OD pair (𝑖𝑖, 𝑗𝑗) is branched off, also constitute an 
(L–R) fuzzy interval. Assuming that each wagon  𝑃𝑃𝑖𝑖𝑖𝑖 flow should be processed as fast as possible, we 
obtain total processing wagon-hours ∑ 𝑃𝑃𝑖𝑖𝑖𝑖𝑡𝑡𝑖𝑖𝑖𝑖𝛴𝛴𝑖𝑖,𝑖𝑖 , where 𝑡𝑡𝑖𝑖𝑖𝑖𝛴𝛴  is the length of the shortest route 𝑀𝑀𝑖𝑖𝑖𝑖𝑁𝑁 between 
stations i and j in the graph of processing operations N and is given by 𝑡𝑡𝑖𝑖𝑖𝑖𝛴𝛴 = ∑ 𝑡𝑡𝑖𝑖𝐿𝐿𝐿𝐿∈𝑀𝑀𝑖𝑖𝑖𝑖𝑁𝑁 . Also note that 

the operation of multiplication in sum ∑ 𝑃𝑃𝑖𝑖𝑖𝑖𝑡𝑡𝑖𝑖𝑖𝑖 𝛴𝛴𝑖𝑖,𝑖𝑖  involves fuzzy numbers (𝑃𝑃𝑖𝑖𝑖𝑖 𝑖𝑖 𝑡𝑡𝑖𝑖𝑖𝑖𝛴𝛴 − fuzzy intervals). 
According to [1,3,4,5], multiplication of (L – R) fuzzy intervals 𝑀𝑀 = (𝑚𝑚,𝑚𝑚,𝛼𝛼, 𝛽𝛽)𝐿𝐿𝐿𝐿 and 𝑁𝑁 =
(𝑛𝑛, 𝑛𝑛, 𝛾𝛾, 𝛿𝛿)𝐿𝐿𝐿𝐿takes the following form: 
𝑁𝑁 ∙ 𝑁𝑁 = (𝑚𝑚𝑛𝑛,𝑚𝑚𝑛𝑛,𝑚𝑚𝑛𝑛 − (𝑚𝑚 − 𝛼𝛼)(𝑛𝑛 − 𝛾𝛾), (𝑚𝑚 + 𝛽𝛽)(𝑛𝑛 + 𝛿𝛿) −𝑚𝑚𝑛𝑛)𝐿𝐿𝐿𝐿. 
The objective function 𝐹𝐹(𝑛𝑛𝑖𝑖𝑖𝑖) describing the wagon-hours of accumulation and processing of wagons 
has the following form:  
 𝐹𝐹(𝑛𝑛𝑖𝑖𝑖𝑖) =∑((𝑐𝑐𝑚𝑚)𝑖𝑖𝑖𝑖𝑛𝑛𝑖𝑖𝑖𝑖 + 𝑃𝑃𝑖𝑖𝑖𝑖𝑡𝑡𝑖𝑖𝑖𝑖𝛴𝛴(𝑛𝑛𝑖𝑖𝑖𝑖)) → min

{𝑛𝑛𝑖𝑖𝑖𝑖}
  (1) 

where 
𝑛𝑛𝑖𝑖𝑖𝑖 = {1 if OD pair (𝑖𝑖, 𝑗𝑗) exists0 otherwise  

. The functions L and R are of the 
form 

 

An L-function (or an R-function) that satisfies these conditions is called a form function. The 
membership function of a fuzzy interval M can be represented by two functions, L and R, and four 
parameters: (𝑚𝑚,𝑚𝑚) ∈ 𝑅𝑅2 – kernel of fuzzy interval (fig. 1 and 2) and 𝛼𝛼, 𝛽𝛽 ≥ 0 – left and right fuzziness 
coefficients, given by:  

𝜇𝜇𝑝𝑝(𝑢𝑢) =

{
 
 
 
 𝐿𝐿 (

𝑚𝑚 − 𝑢𝑢
𝛼𝛼 )  𝑖𝑖𝑖𝑖 𝑢𝑢 ≤ 𝑚𝑚

1 𝑖𝑖𝑖𝑖 𝑚𝑚 ≤ 𝑢𝑢 ≤ 𝑚𝑚

𝑅𝑅(𝑢𝑢 −𝑚𝑚𝛽𝛽 )  𝑖𝑖𝑖𝑖 𝑢𝑢 ≥ 𝑚𝑚
 

It is convenient to divide wagon flows into two classes depending on their size. A first class consists of 
small flows, including null flows, i.e. 𝑃𝑃𝑖𝑖𝑖𝑖 = 0. A second class encompasses large flows, i.e. 𝑃𝑃𝑖𝑖𝑖𝑖 ≠ 0. 
Thus, a wagon flow 𝑃𝑃𝑖𝑖𝑖𝑖 can be represented as an (L – R) fuzzy interval of the following type: 𝑃𝑃𝑖𝑖𝑖𝑖 =
(𝑚𝑚,𝑚𝑚, 𝛼𝛼, 𝛽𝛽)𝐿𝐿𝐿𝐿. The functions L and R are of the form 𝐿𝐿 (𝑚𝑚−𝑢𝑢𝛼𝛼 ) = 1 − (1 − ℎ) (𝑚𝑚−𝑢𝑢𝛼𝛼 ) if 0 ≤ 𝑢𝑢 ≤ 𝑚𝑚, 

where h is the degree of likelihood that a given wagon flow 𝑁𝑁𝑖𝑖𝑖𝑖 = 0; 0 ≤ ℎ ≤ 1; 𝑅𝑅 (𝑢𝑢−𝑚𝑚𝛽𝛽 ) = 1 − (𝑢𝑢−𝑚𝑚𝛽𝛽 ) 
if 𝑢𝑢 ≥ 𝑚𝑚. Fuzzy first and second-class wagon flows are shown in Figures 1 and 2. 
 
For the first class of wagons it is assumed that ℎ = 0. Let the shortest route between two vertices of 
graph G be denoted by 𝑀𝑀𝑖𝑖𝑖𝑖. 
In this study, wagon flow size is expressed as an interval to take account of real-life instability of and 
fluctuations in railroad freight volumes. Wagon-hour savings for one wagon moved from station i 
through station j without processing is also shown as an (L – R) fuzzy interval with a kernel of most 
feasible values for a given station 𝑡𝑡𝑖𝑖𝑖𝑖 = (𝑡𝑡, 𝑡𝑡, 𝛼𝛼, 𝛽𝛽)𝐿𝐿𝐿𝐿. It is also assumed that 𝑡𝑡𝑖𝑖𝑖𝑖 = 0, i.e. 𝑡𝑡𝑖𝑖𝑖𝑖 is a real 
number belonging to R. Then 𝑡𝑡𝑖𝑖𝑖𝑖 = (0, 0, 0, 0)𝐿𝐿𝐿𝐿, ∀𝐿𝐿, 𝑅𝑅. 
Wagon-hour accumulation (𝑐𝑐𝑚𝑚)𝑖𝑖𝑖𝑖 related to assembling, on station i, a train serving one origin-
destination (OD) pair and travelling towards station j is also given by an (L – R) fuzzy interval. It is 
known that (𝑐𝑐𝑚𝑚)𝑖𝑖𝑖𝑖 = (𝑐𝑐𝑚𝑚)𝑖𝑖𝑝𝑝, where (𝑖𝑖, 𝑝𝑝) – first arc of route 𝑀𝑀𝑖𝑖𝑖𝑖.  
Savings 𝑇𝑇𝑖𝑖𝑖𝑖 associated with the movement of one wagon without processing, when the OD pair (𝑖𝑖, 𝑗𝑗) is 
singled out (branched off): 
 𝑇𝑇𝑖𝑖𝑖𝑖 = ∑ 𝑡𝑡𝑖𝑖𝐿𝐿𝐿𝐿∈𝑀𝑀𝑖𝑖𝑖𝑖

𝐿𝐿≠𝑖𝑖
; 

here, the sum applies to all stations located on the shortest route 𝑀𝑀𝑖𝑖𝑖𝑖 between stations i and j, and is 
calculated as a sum of fuzzy numbers. 
A sum of two (L–R) fuzzy intervals 𝑀𝑀 = (𝑚𝑚,𝑚𝑚,𝛼𝛼, 𝛽𝛽)𝐿𝐿𝐿𝐿 and 𝑁𝑁 = (𝑛𝑛, 𝑛𝑛, 𝛾𝛾, 𝛿𝛿)𝐿𝐿𝐿𝐿 is of the following form 
[1,3,4,5]: 𝑀𝑀+𝑁𝑁 = (𝑚𝑚 + 𝑛𝑛,𝑚𝑚 + 𝑛𝑛, 𝛼𝛼 + 𝛾𝛾, 𝛽𝛽 + 𝛿𝛿)𝐿𝐿𝐿𝐿. Given this, savings 𝑇𝑇𝑖𝑖𝑖𝑖 associated with the 
movement of one wagon, without processing, when the OD pair (𝑖𝑖, 𝑗𝑗) is branched off, also constitute an 
(L–R) fuzzy interval. Assuming that each wagon  𝑃𝑃𝑖𝑖𝑖𝑖 flow should be processed as fast as possible, we 
obtain total processing wagon-hours ∑ 𝑃𝑃𝑖𝑖𝑖𝑖𝑡𝑡𝑖𝑖𝑖𝑖𝛴𝛴𝑖𝑖,𝑖𝑖 , where 𝑡𝑡𝑖𝑖𝑖𝑖𝛴𝛴  is the length of the shortest route 𝑀𝑀𝑖𝑖𝑖𝑖𝑁𝑁 between 
stations i and j in the graph of processing operations N and is given by 𝑡𝑡𝑖𝑖𝑖𝑖𝛴𝛴 = ∑ 𝑡𝑡𝑖𝑖𝐿𝐿𝐿𝐿∈𝑀𝑀𝑖𝑖𝑖𝑖𝑁𝑁 . Also note that 

the operation of multiplication in sum ∑ 𝑃𝑃𝑖𝑖𝑖𝑖𝑡𝑡𝑖𝑖𝑖𝑖 𝛴𝛴𝑖𝑖,𝑖𝑖  involves fuzzy numbers (𝑃𝑃𝑖𝑖𝑖𝑖 𝑖𝑖 𝑡𝑡𝑖𝑖𝑖𝑖𝛴𝛴 − fuzzy intervals). 
According to [1,3,4,5], multiplication of (L – R) fuzzy intervals 𝑀𝑀 = (𝑚𝑚,𝑚𝑚,𝛼𝛼, 𝛽𝛽)𝐿𝐿𝐿𝐿 and 𝑁𝑁 =
(𝑛𝑛, 𝑛𝑛, 𝛾𝛾, 𝛿𝛿)𝐿𝐿𝐿𝐿takes the following form: 
𝑁𝑁 ∙ 𝑁𝑁 = (𝑚𝑚𝑛𝑛,𝑚𝑚𝑛𝑛,𝑚𝑚𝑛𝑛 − (𝑚𝑚 − 𝛼𝛼)(𝑛𝑛 − 𝛾𝛾), (𝑚𝑚 + 𝛽𝛽)(𝑛𝑛 + 𝛿𝛿) −𝑚𝑚𝑛𝑛)𝐿𝐿𝐿𝐿. 
The objective function 𝐹𝐹(𝑛𝑛𝑖𝑖𝑖𝑖) describing the wagon-hours of accumulation and processing of wagons 
has the following form:  
 𝐹𝐹(𝑛𝑛𝑖𝑖𝑖𝑖) =∑((𝑐𝑐𝑚𝑚)𝑖𝑖𝑖𝑖𝑛𝑛𝑖𝑖𝑖𝑖 + 𝑃𝑃𝑖𝑖𝑖𝑖𝑡𝑡𝑖𝑖𝑖𝑖𝛴𝛴(𝑛𝑛𝑖𝑖𝑖𝑖)) → min

{𝑛𝑛𝑖𝑖𝑖𝑖}
  (1) 

where 
𝑛𝑛𝑖𝑖𝑖𝑖 = {1 if OD pair (𝑖𝑖, 𝑗𝑗) exists0 otherwise  

 if  0 ≤ u ≤ 

1 
 

𝐿𝐿(0) = 1, and also ∀𝑢𝑢 > 0, 𝐿𝐿(𝑢𝑢) < 1 ∀𝑢𝑢 < 1, 𝐿𝐿(𝑢𝑢) > 0, 
𝐿𝐿 = 0 or 𝐿𝐿(𝑢𝑢) > 0, ∀𝑢𝑢   𝑎𝑎𝑎𝑎𝑎𝑎     𝐿𝐿(+∞) = 0 

𝜇𝜇𝑝𝑝(𝑢𝑢) =

{
 
 
 
 𝐿𝐿 (

𝑚𝑚 − 𝑢𝑢
𝛼𝛼 )  𝑖𝑖𝑖𝑖 𝑢𝑢 ≤ 𝑚𝑚

1 𝑖𝑖𝑖𝑖 𝑚𝑚 ≤ 𝑢𝑢 ≤ 𝑚𝑚

𝑅𝑅 (𝑢𝑢 −𝑚𝑚𝛽𝛽 )  𝑖𝑖𝑖𝑖 𝑢𝑢 ≥ 𝑚𝑚
 

                                                                      𝑇𝑇𝑖𝑖𝑖𝑖 = ∑ 𝑡𝑡𝑖𝑖𝑖𝑖𝑖𝑖∈𝑀𝑀𝑖𝑖𝑖𝑖
𝑖𝑖≠𝑖𝑖

; 

 𝐹𝐹(𝑎𝑎𝑖𝑖𝑖𝑖) =∑((𝑐𝑐𝑚𝑚)𝑖𝑖𝑖𝑖𝑎𝑎𝑖𝑖𝑖𝑖 + 𝑃𝑃𝑖𝑖𝑖𝑖𝑡𝑡𝑖𝑖𝑖𝑖𝛴𝛴 (𝑎𝑎𝑖𝑖𝑖𝑖)) → min
{𝑛𝑛𝑖𝑖𝑖𝑖}

  (1) 

 

𝑎𝑎𝑖𝑖𝑖𝑖 = {1 if OD pair (𝑖𝑖, 𝑗𝑗) exists0 otherwise  

 

 𝜆𝜆𝑆𝑆𝑘𝑘 = 𝜆𝜆(𝐺𝐺𝑆𝑆𝑘𝑘) =∑(𝑐𝑐𝑚𝑚)𝑖𝑖𝑖𝑖𝑎𝑎𝑖𝑖𝑖𝑖(𝑁𝑁𝑆𝑆(𝑘𝑘)𝑘𝑘 ) +∑𝑃𝑃𝑖𝑖𝑖𝑖
𝑖𝑖,𝑖𝑖𝑖𝑖,𝑖𝑖

𝑡𝑡𝑖𝑖𝑖𝑖𝛴𝛴 (𝑁𝑁𝑆𝑆(𝑘𝑘)𝑘𝑘 ∪ �̃�𝑁𝑆𝑆(𝑘𝑘)𝑘𝑘 ) (2) 

 

 𝐹𝐹 (𝑁𝑁𝑆𝑆(𝑘𝑘)𝑘𝑘 ∪ (𝑖𝑖, 𝑗𝑗)) ≻ 𝐹𝐹(𝑁𝑁𝑆𝑆(𝑘𝑘)𝑘𝑘 ) (3) 

 

1). 𝐵𝐵𝑀𝑀([𝑁𝑁,+∞)) = 𝐵𝐵(𝑋𝑋 ≥ 𝑌𝑌) = 𝑠𝑠𝑢𝑢𝑠𝑠
𝑢𝑢
𝑚𝑚𝑖𝑖𝑎𝑎
 (𝜇𝜇𝑀𝑀(𝑢𝑢),

𝑠𝑠𝑢𝑢𝑠𝑠
𝑣𝑣 ≤ 𝑢𝑢(𝑣𝑣)) =

= 𝑠𝑠𝑢𝑢𝑠𝑠
𝑢𝑢 ≥ 𝑣𝑣

𝑚𝑚𝑖𝑖𝑎𝑎
 (𝜇𝜇𝑀𝑀(𝑢𝑢), 𝜇𝜇𝑁𝑁(𝑣𝑣))   

(4) 

 

2). 𝐵𝐵𝑀𝑀((𝑁𝑁,+∞)) = 𝐵𝐵(𝑋𝑋 > 𝑌𝑌) = 𝑠𝑠𝑢𝑢𝑠𝑠𝑢𝑢
𝑚𝑚𝑖𝑖𝑎𝑎
 (𝜇𝜇𝑀𝑀(𝑢𝑢), 𝑖𝑖𝑎𝑎𝑖𝑖(1 − 𝜇𝜇𝑁𝑁(𝑣𝑣))) =

= 𝑠𝑠𝑢𝑢𝑠𝑠𝑢𝑢
𝑖𝑖𝑎𝑎𝑖𝑖
𝑣𝑣 > 𝑢𝑢

𝑚𝑚𝑖𝑖𝑎𝑎
 (𝜇𝜇𝑀𝑀(𝑢𝑢), 𝜇𝜇𝑁𝑁(𝑣𝑣))   

(5) 

 

3). 𝐻𝐻𝑀𝑀([𝑁𝑁,+∞)) = 𝐻𝐻(𝑋𝑋 ≥ 𝑌𝑌) = 𝑖𝑖𝑎𝑎𝑖𝑖𝑢𝑢
𝑚𝑚𝑎𝑎𝑚𝑚
 (1 − 𝜇𝜇𝑀𝑀(𝑢𝑢),

𝑠𝑠𝑢𝑢𝑠𝑠
𝑣𝑣 ≤ 𝑢𝑢𝜇𝜇𝑁𝑁(𝑣𝑣)) =

= 𝑖𝑖𝑎𝑎𝑖𝑖𝑢𝑢
𝑠𝑠𝑢𝑢𝑠𝑠
𝑢𝑢 ≤ 𝑣𝑣

𝑚𝑚𝑎𝑎𝑚𝑚
 (1 − 𝜇𝜇𝑀𝑀(𝑢𝑢), 𝜇𝜇𝑁𝑁(𝑣𝑣))   

(6) 

 

4). 𝐻𝐻𝑀𝑀((𝑁𝑁, +∞)) = 𝐻𝐻(𝑋𝑋 > 𝑌𝑌) = 𝑖𝑖𝑎𝑎𝑖𝑖𝑢𝑢
𝑚𝑚𝑎𝑎𝑚𝑚
 (1 − 𝜇𝜇𝑀𝑀(𝑢𝑢), 𝑖𝑖𝑎𝑎𝑖𝑖(1 − 𝜇𝜇𝑁𝑁(𝑣𝑣))) =

= 1 − 𝑠𝑠𝑢𝑢𝑠𝑠
𝑢𝑢 ≤ 𝑣𝑣

𝑚𝑚𝑖𝑖𝑎𝑎
 (𝜇𝜇𝑀𝑀(𝑢𝑢), 𝜇𝜇𝑁𝑁(𝑣𝑣))   

(7) 

 

 

, 
where h is the degree of likelihood that a given wag-
on flow 

 

An L-function (or an R-function) that satisfies these conditions is called a form function. The 
membership function of a fuzzy interval M can be represented by two functions, L and R, and four 
parameters: (𝑚𝑚,𝑚𝑚) ∈ 𝑅𝑅2 – kernel of fuzzy interval (fig. 1 and 2) and 𝛼𝛼, 𝛽𝛽 ≥ 0 – left and right fuzziness 
coefficients, given by:  

𝜇𝜇𝑝𝑝(𝑢𝑢) =

{
 
 
 
 𝐿𝐿 (

𝑚𝑚 − 𝑢𝑢
𝛼𝛼 )  𝑖𝑖𝑖𝑖 𝑢𝑢 ≤ 𝑚𝑚

1 𝑖𝑖𝑖𝑖 𝑚𝑚 ≤ 𝑢𝑢 ≤ 𝑚𝑚

𝑅𝑅(𝑢𝑢 −𝑚𝑚𝛽𝛽 )  𝑖𝑖𝑖𝑖 𝑢𝑢 ≥ 𝑚𝑚
 

It is convenient to divide wagon flows into two classes depending on their size. A first class consists of 
small flows, including null flows, i.e. 𝑃𝑃𝑖𝑖𝑖𝑖 = 0. A second class encompasses large flows, i.e. 𝑃𝑃𝑖𝑖𝑖𝑖 ≠ 0. 
Thus, a wagon flow 𝑃𝑃𝑖𝑖𝑖𝑖 can be represented as an (L – R) fuzzy interval of the following type: 𝑃𝑃𝑖𝑖𝑖𝑖 =
(𝑚𝑚,𝑚𝑚, 𝛼𝛼, 𝛽𝛽)𝐿𝐿𝐿𝐿. The functions L and R are of the form 𝐿𝐿 (𝑚𝑚−𝑢𝑢𝛼𝛼 ) = 1 − (1 − ℎ) (𝑚𝑚−𝑢𝑢𝛼𝛼 ) if 0 ≤ 𝑢𝑢 ≤ 𝑚𝑚, 

where h is the degree of likelihood that a given wagon flow 𝑁𝑁𝑖𝑖𝑖𝑖 = 0; 0 ≤ ℎ ≤ 1; 𝑅𝑅 (𝑢𝑢−𝑚𝑚𝛽𝛽 ) = 1 − (𝑢𝑢−𝑚𝑚𝛽𝛽 ) 
if 𝑢𝑢 ≥ 𝑚𝑚. Fuzzy first and second-class wagon flows are shown in Figures 1 and 2. 
 
For the first class of wagons it is assumed that ℎ = 0. Let the shortest route between two vertices of 
graph G be denoted by 𝑀𝑀𝑖𝑖𝑖𝑖. 
In this study, wagon flow size is expressed as an interval to take account of real-life instability of and 
fluctuations in railroad freight volumes. Wagon-hour savings for one wagon moved from station i 
through station j without processing is also shown as an (L – R) fuzzy interval with a kernel of most 
feasible values for a given station 𝑡𝑡𝑖𝑖𝑖𝑖 = (𝑡𝑡, 𝑡𝑡, 𝛼𝛼, 𝛽𝛽)𝐿𝐿𝐿𝐿. It is also assumed that 𝑡𝑡𝑖𝑖𝑖𝑖 = 0, i.e. 𝑡𝑡𝑖𝑖𝑖𝑖 is a real 
number belonging to R. Then 𝑡𝑡𝑖𝑖𝑖𝑖 = (0, 0, 0, 0)𝐿𝐿𝐿𝐿, ∀𝐿𝐿, 𝑅𝑅. 
Wagon-hour accumulation (𝑐𝑐𝑚𝑚)𝑖𝑖𝑖𝑖 related to assembling, on station i, a train serving one origin-
destination (OD) pair and travelling towards station j is also given by an (L – R) fuzzy interval. It is 
known that (𝑐𝑐𝑚𝑚)𝑖𝑖𝑖𝑖 = (𝑐𝑐𝑚𝑚)𝑖𝑖𝑝𝑝, where (𝑖𝑖, 𝑝𝑝) – first arc of route 𝑀𝑀𝑖𝑖𝑖𝑖.  
Savings 𝑇𝑇𝑖𝑖𝑖𝑖 associated with the movement of one wagon without processing, when the OD pair (𝑖𝑖, 𝑗𝑗) is 
singled out (branched off): 
 𝑇𝑇𝑖𝑖𝑖𝑖 = ∑ 𝑡𝑡𝑖𝑖𝐿𝐿𝐿𝐿∈𝑀𝑀𝑖𝑖𝑖𝑖

𝐿𝐿≠𝑖𝑖
; 

here, the sum applies to all stations located on the shortest route 𝑀𝑀𝑖𝑖𝑖𝑖 between stations i and j, and is 
calculated as a sum of fuzzy numbers. 
A sum of two (L–R) fuzzy intervals 𝑀𝑀 = (𝑚𝑚,𝑚𝑚,𝛼𝛼, 𝛽𝛽)𝐿𝐿𝐿𝐿 and 𝑁𝑁 = (𝑛𝑛, 𝑛𝑛, 𝛾𝛾, 𝛿𝛿)𝐿𝐿𝐿𝐿 is of the following form 
[1,3,4,5]: 𝑀𝑀+𝑁𝑁 = (𝑚𝑚 + 𝑛𝑛,𝑚𝑚 + 𝑛𝑛, 𝛼𝛼 + 𝛾𝛾, 𝛽𝛽 + 𝛿𝛿)𝐿𝐿𝐿𝐿. Given this, savings 𝑇𝑇𝑖𝑖𝑖𝑖 associated with the 
movement of one wagon, without processing, when the OD pair (𝑖𝑖, 𝑗𝑗) is branched off, also constitute an 
(L–R) fuzzy interval. Assuming that each wagon  𝑃𝑃𝑖𝑖𝑖𝑖 flow should be processed as fast as possible, we 
obtain total processing wagon-hours ∑ 𝑃𝑃𝑖𝑖𝑖𝑖𝑡𝑡𝑖𝑖𝑖𝑖𝛴𝛴𝑖𝑖,𝑖𝑖 , where 𝑡𝑡𝑖𝑖𝑖𝑖𝛴𝛴  is the length of the shortest route 𝑀𝑀𝑖𝑖𝑖𝑖𝑁𝑁 between 
stations i and j in the graph of processing operations N and is given by 𝑡𝑡𝑖𝑖𝑖𝑖𝛴𝛴 = ∑ 𝑡𝑡𝑖𝑖𝐿𝐿𝐿𝐿∈𝑀𝑀𝑖𝑖𝑖𝑖𝑁𝑁 . Also note that 

the operation of multiplication in sum ∑ 𝑃𝑃𝑖𝑖𝑖𝑖𝑡𝑡𝑖𝑖𝑖𝑖 𝛴𝛴𝑖𝑖,𝑖𝑖  involves fuzzy numbers (𝑃𝑃𝑖𝑖𝑖𝑖 𝑖𝑖 𝑡𝑡𝑖𝑖𝑖𝑖𝛴𝛴 − fuzzy intervals). 
According to [1,3,4,5], multiplication of (L – R) fuzzy intervals 𝑀𝑀 = (𝑚𝑚,𝑚𝑚,𝛼𝛼, 𝛽𝛽)𝐿𝐿𝐿𝐿 and 𝑁𝑁 =
(𝑛𝑛, 𝑛𝑛, 𝛾𝛾, 𝛿𝛿)𝐿𝐿𝐿𝐿takes the following form: 
𝑁𝑁 ∙ 𝑁𝑁 = (𝑚𝑚𝑛𝑛,𝑚𝑚𝑛𝑛,𝑚𝑚𝑛𝑛 − (𝑚𝑚 − 𝛼𝛼)(𝑛𝑛 − 𝛾𝛾), (𝑚𝑚 + 𝛽𝛽)(𝑛𝑛 + 𝛿𝛿) −𝑚𝑚𝑛𝑛)𝐿𝐿𝐿𝐿. 
The objective function 𝐹𝐹(𝑛𝑛𝑖𝑖𝑖𝑖) describing the wagon-hours of accumulation and processing of wagons 
has the following form:  
 𝐹𝐹(𝑛𝑛𝑖𝑖𝑖𝑖) =∑((𝑐𝑐𝑚𝑚)𝑖𝑖𝑖𝑖𝑛𝑛𝑖𝑖𝑖𝑖 + 𝑃𝑃𝑖𝑖𝑖𝑖𝑡𝑡𝑖𝑖𝑖𝑖𝛴𝛴(𝑛𝑛𝑖𝑖𝑖𝑖)) → min

{𝑛𝑛𝑖𝑖𝑖𝑖}
  (1) 

where 
𝑛𝑛𝑖𝑖𝑖𝑖 = {1 if OD pair (𝑖𝑖, 𝑗𝑗) exists0 otherwise  

  
if u ≥ 

1 
 

𝐿𝐿(0) = 1, and also ∀𝑢𝑢 > 0, 𝐿𝐿(𝑢𝑢) < 1 ∀𝑢𝑢 < 1, 𝐿𝐿(𝑢𝑢) > 0, 
𝐿𝐿 = 0 or 𝐿𝐿(𝑢𝑢) > 0, ∀𝑢𝑢   𝑎𝑎𝑎𝑎𝑎𝑎     𝐿𝐿(+∞) = 0 

𝜇𝜇𝑝𝑝(𝑢𝑢) =

{
 
 
 
 𝐿𝐿 (

𝑚𝑚 − 𝑢𝑢
𝛼𝛼 )  𝑖𝑖𝑖𝑖 𝑢𝑢 ≤ 𝑚𝑚

1 𝑖𝑖𝑖𝑖 𝑚𝑚 ≤ 𝑢𝑢 ≤ 𝑚𝑚

𝑅𝑅 (𝑢𝑢 −𝑚𝑚𝛽𝛽 )  𝑖𝑖𝑖𝑖 𝑢𝑢 ≥ 𝑚𝑚
 

                                                                      𝑇𝑇𝑖𝑖𝑖𝑖 = ∑ 𝑡𝑡𝑖𝑖𝑖𝑖𝑖𝑖∈𝑀𝑀𝑖𝑖𝑖𝑖
𝑖𝑖≠𝑖𝑖

; 

 𝐹𝐹(𝑎𝑎𝑖𝑖𝑖𝑖) =∑((𝑐𝑐𝑚𝑚)𝑖𝑖𝑖𝑖𝑎𝑎𝑖𝑖𝑖𝑖 + 𝑃𝑃𝑖𝑖𝑖𝑖𝑡𝑡𝑖𝑖𝑖𝑖𝛴𝛴 (𝑎𝑎𝑖𝑖𝑖𝑖)) → min
{𝑛𝑛𝑖𝑖𝑖𝑖}

  (1) 

 

𝑎𝑎𝑖𝑖𝑖𝑖 = {1 if OD pair (𝑖𝑖, 𝑗𝑗) exists0 otherwise  

 

 𝜆𝜆𝑆𝑆𝑘𝑘 = 𝜆𝜆(𝐺𝐺𝑆𝑆𝑘𝑘) =∑(𝑐𝑐𝑚𝑚)𝑖𝑖𝑖𝑖𝑎𝑎𝑖𝑖𝑖𝑖(𝑁𝑁𝑆𝑆(𝑘𝑘)𝑘𝑘 ) +∑𝑃𝑃𝑖𝑖𝑖𝑖
𝑖𝑖,𝑖𝑖𝑖𝑖,𝑖𝑖

𝑡𝑡𝑖𝑖𝑖𝑖𝛴𝛴 (𝑁𝑁𝑆𝑆(𝑘𝑘)𝑘𝑘 ∪ �̃�𝑁𝑆𝑆(𝑘𝑘)𝑘𝑘 ) (2) 

 

 𝐹𝐹 (𝑁𝑁𝑆𝑆(𝑘𝑘)𝑘𝑘 ∪ (𝑖𝑖, 𝑗𝑗)) ≻ 𝐹𝐹(𝑁𝑁𝑆𝑆(𝑘𝑘)𝑘𝑘 ) (3) 

 

1). 𝐵𝐵𝑀𝑀([𝑁𝑁,+∞)) = 𝐵𝐵(𝑋𝑋 ≥ 𝑌𝑌) = 𝑠𝑠𝑢𝑢𝑠𝑠
𝑢𝑢
𝑚𝑚𝑖𝑖𝑎𝑎
 (𝜇𝜇𝑀𝑀(𝑢𝑢),

𝑠𝑠𝑢𝑢𝑠𝑠
𝑣𝑣 ≤ 𝑢𝑢(𝑣𝑣)) =

= 𝑠𝑠𝑢𝑢𝑠𝑠
𝑢𝑢 ≥ 𝑣𝑣

𝑚𝑚𝑖𝑖𝑎𝑎
 (𝜇𝜇𝑀𝑀(𝑢𝑢), 𝜇𝜇𝑁𝑁(𝑣𝑣))   

(4) 

 

2). 𝐵𝐵𝑀𝑀((𝑁𝑁,+∞)) = 𝐵𝐵(𝑋𝑋 > 𝑌𝑌) = 𝑠𝑠𝑢𝑢𝑠𝑠𝑢𝑢
𝑚𝑚𝑖𝑖𝑎𝑎
 (𝜇𝜇𝑀𝑀(𝑢𝑢), 𝑖𝑖𝑎𝑎𝑖𝑖(1 − 𝜇𝜇𝑁𝑁(𝑣𝑣))) =

= 𝑠𝑠𝑢𝑢𝑠𝑠𝑢𝑢
𝑖𝑖𝑎𝑎𝑖𝑖
𝑣𝑣 > 𝑢𝑢

𝑚𝑚𝑖𝑖𝑎𝑎
 (𝜇𝜇𝑀𝑀(𝑢𝑢), 𝜇𝜇𝑁𝑁(𝑣𝑣))   

(5) 

 

3). 𝐻𝐻𝑀𝑀([𝑁𝑁,+∞)) = 𝐻𝐻(𝑋𝑋 ≥ 𝑌𝑌) = 𝑖𝑖𝑎𝑎𝑖𝑖𝑢𝑢
𝑚𝑚𝑎𝑎𝑚𝑚
 (1 − 𝜇𝜇𝑀𝑀(𝑢𝑢),

𝑠𝑠𝑢𝑢𝑠𝑠
𝑣𝑣 ≤ 𝑢𝑢𝜇𝜇𝑁𝑁(𝑣𝑣)) =

= 𝑖𝑖𝑎𝑎𝑖𝑖𝑢𝑢
𝑠𝑠𝑢𝑢𝑠𝑠
𝑢𝑢 ≤ 𝑣𝑣

𝑚𝑚𝑎𝑎𝑚𝑚
 (1 − 𝜇𝜇𝑀𝑀(𝑢𝑢), 𝜇𝜇𝑁𝑁(𝑣𝑣))   

(6) 

 

4). 𝐻𝐻𝑀𝑀((𝑁𝑁, +∞)) = 𝐻𝐻(𝑋𝑋 > 𝑌𝑌) = 𝑖𝑖𝑎𝑎𝑖𝑖𝑢𝑢
𝑚𝑚𝑎𝑎𝑚𝑚
 (1 − 𝜇𝜇𝑀𝑀(𝑢𝑢), 𝑖𝑖𝑎𝑎𝑖𝑖(1 − 𝜇𝜇𝑁𝑁(𝑣𝑣))) =

= 1 − 𝑠𝑠𝑢𝑢𝑠𝑠
𝑢𝑢 ≤ 𝑣𝑣

𝑚𝑚𝑖𝑖𝑎𝑎
 (𝜇𝜇𝑀𝑀(𝑢𝑢), 𝜇𝜇𝑁𝑁(𝑣𝑣))   

(7) 

 

 

. Fuzzy first and second-class wagon 
flows are shown in Figures 1 and 2.

For the first class of wagons it is assumed that 
h = 0. Let the shortest route between two vertices 
of graph G be denoted by Mij.

In this study, wagon flow size is expressed as 
an interval to take account of real-life instability 
of and fluctuations in railroad freight volumes. 
Wagon-hour savings for one wagon moved from 
station i through station j without processing is 
also shown as an (L – R) fuzzy interval with a 
kernel of most feasible values for a given station 

 

An L-function (or an R-function) that satisfies these conditions is called a form function. The 
membership function of a fuzzy interval M can be represented by two functions, L and R, and four 
parameters: (𝑚𝑚,𝑚𝑚) ∈ 𝑅𝑅2 – kernel of fuzzy interval (fig. 1 and 2) and 𝛼𝛼, 𝛽𝛽 ≥ 0 – left and right fuzziness 
coefficients, given by:  

𝜇𝜇𝑝𝑝(𝑢𝑢) =

{
 
 
 
 𝐿𝐿 (

𝑚𝑚 − 𝑢𝑢
𝛼𝛼 )  𝑖𝑖𝑖𝑖 𝑢𝑢 ≤ 𝑚𝑚

1 𝑖𝑖𝑖𝑖 𝑚𝑚 ≤ 𝑢𝑢 ≤ 𝑚𝑚

𝑅𝑅(𝑢𝑢 −𝑚𝑚𝛽𝛽 )  𝑖𝑖𝑖𝑖 𝑢𝑢 ≥ 𝑚𝑚
 

It is convenient to divide wagon flows into two classes depending on their size. A first class consists of 
small flows, including null flows, i.e. 𝑃𝑃𝑖𝑖𝑖𝑖 = 0. A second class encompasses large flows, i.e. 𝑃𝑃𝑖𝑖𝑖𝑖 ≠ 0. 
Thus, a wagon flow 𝑃𝑃𝑖𝑖𝑖𝑖 can be represented as an (L – R) fuzzy interval of the following type: 𝑃𝑃𝑖𝑖𝑖𝑖 =
(𝑚𝑚,𝑚𝑚, 𝛼𝛼, 𝛽𝛽)𝐿𝐿𝐿𝐿. The functions L and R are of the form 𝐿𝐿 (𝑚𝑚−𝑢𝑢𝛼𝛼 ) = 1 − (1 − ℎ) (𝑚𝑚−𝑢𝑢𝛼𝛼 ) if 0 ≤ 𝑢𝑢 ≤ 𝑚𝑚, 

where h is the degree of likelihood that a given wagon flow 𝑁𝑁𝑖𝑖𝑖𝑖 = 0; 0 ≤ ℎ ≤ 1; 𝑅𝑅 (𝑢𝑢−𝑚𝑚𝛽𝛽 ) = 1 − (𝑢𝑢−𝑚𝑚𝛽𝛽 ) 
if 𝑢𝑢 ≥ 𝑚𝑚. Fuzzy first and second-class wagon flows are shown in Figures 1 and 2. 
 
For the first class of wagons it is assumed that ℎ = 0. Let the shortest route between two vertices of 
graph G be denoted by 𝑀𝑀𝑖𝑖𝑖𝑖. 
In this study, wagon flow size is expressed as an interval to take account of real-life instability of and 
fluctuations in railroad freight volumes. Wagon-hour savings for one wagon moved from station i 
through station j without processing is also shown as an (L – R) fuzzy interval with a kernel of most 
feasible values for a given station 𝑡𝑡𝑖𝑖𝑖𝑖 = (𝑡𝑡, 𝑡𝑡, 𝛼𝛼, 𝛽𝛽)𝐿𝐿𝐿𝐿. It is also assumed that 𝑡𝑡𝑖𝑖𝑖𝑖 = 0, i.e. 𝑡𝑡𝑖𝑖𝑖𝑖 is a real 
number belonging to R. Then 𝑡𝑡𝑖𝑖𝑖𝑖 = (0, 0, 0, 0)𝐿𝐿𝐿𝐿, ∀𝐿𝐿, 𝑅𝑅. 
Wagon-hour accumulation (𝑐𝑐𝑚𝑚)𝑖𝑖𝑖𝑖 related to assembling, on station i, a train serving one origin-
destination (OD) pair and travelling towards station j is also given by an (L – R) fuzzy interval. It is 
known that (𝑐𝑐𝑚𝑚)𝑖𝑖𝑖𝑖 = (𝑐𝑐𝑚𝑚)𝑖𝑖𝑝𝑝, where (𝑖𝑖, 𝑝𝑝) – first arc of route 𝑀𝑀𝑖𝑖𝑖𝑖.  
Savings 𝑇𝑇𝑖𝑖𝑖𝑖 associated with the movement of one wagon without processing, when the OD pair (𝑖𝑖, 𝑗𝑗) is 
singled out (branched off): 
 𝑇𝑇𝑖𝑖𝑖𝑖 = ∑ 𝑡𝑡𝑖𝑖𝐿𝐿𝐿𝐿∈𝑀𝑀𝑖𝑖𝑖𝑖

𝐿𝐿≠𝑖𝑖
; 

here, the sum applies to all stations located on the shortest route 𝑀𝑀𝑖𝑖𝑖𝑖 between stations i and j, and is 
calculated as a sum of fuzzy numbers. 
A sum of two (L–R) fuzzy intervals 𝑀𝑀 = (𝑚𝑚,𝑚𝑚,𝛼𝛼, 𝛽𝛽)𝐿𝐿𝐿𝐿 and 𝑁𝑁 = (𝑛𝑛, 𝑛𝑛, 𝛾𝛾, 𝛿𝛿)𝐿𝐿𝐿𝐿 is of the following form 
[1,3,4,5]: 𝑀𝑀+𝑁𝑁 = (𝑚𝑚 + 𝑛𝑛,𝑚𝑚 + 𝑛𝑛, 𝛼𝛼 + 𝛾𝛾, 𝛽𝛽 + 𝛿𝛿)𝐿𝐿𝐿𝐿. Given this, savings 𝑇𝑇𝑖𝑖𝑖𝑖 associated with the 
movement of one wagon, without processing, when the OD pair (𝑖𝑖, 𝑗𝑗) is branched off, also constitute an 
(L–R) fuzzy interval. Assuming that each wagon  𝑃𝑃𝑖𝑖𝑖𝑖 flow should be processed as fast as possible, we 
obtain total processing wagon-hours ∑ 𝑃𝑃𝑖𝑖𝑖𝑖𝑡𝑡𝑖𝑖𝑖𝑖𝛴𝛴𝑖𝑖,𝑖𝑖 , where 𝑡𝑡𝑖𝑖𝑖𝑖𝛴𝛴  is the length of the shortest route 𝑀𝑀𝑖𝑖𝑖𝑖𝑁𝑁 between 
stations i and j in the graph of processing operations N and is given by 𝑡𝑡𝑖𝑖𝑖𝑖𝛴𝛴 = ∑ 𝑡𝑡𝑖𝑖𝐿𝐿𝐿𝐿∈𝑀𝑀𝑖𝑖𝑖𝑖𝑁𝑁 . Also note that 

the operation of multiplication in sum ∑ 𝑃𝑃𝑖𝑖𝑖𝑖𝑡𝑡𝑖𝑖𝑖𝑖 𝛴𝛴𝑖𝑖,𝑖𝑖  involves fuzzy numbers (𝑃𝑃𝑖𝑖𝑖𝑖 𝑖𝑖 𝑡𝑡𝑖𝑖𝑖𝑖𝛴𝛴 − fuzzy intervals). 
According to [1,3,4,5], multiplication of (L – R) fuzzy intervals 𝑀𝑀 = (𝑚𝑚,𝑚𝑚,𝛼𝛼, 𝛽𝛽)𝐿𝐿𝐿𝐿 and 𝑁𝑁 =
(𝑛𝑛, 𝑛𝑛, 𝛾𝛾, 𝛿𝛿)𝐿𝐿𝐿𝐿takes the following form: 
𝑁𝑁 ∙ 𝑁𝑁 = (𝑚𝑚𝑛𝑛,𝑚𝑚𝑛𝑛,𝑚𝑚𝑛𝑛 − (𝑚𝑚 − 𝛼𝛼)(𝑛𝑛 − 𝛾𝛾), (𝑚𝑚 + 𝛽𝛽)(𝑛𝑛 + 𝛿𝛿) −𝑚𝑚𝑛𝑛)𝐿𝐿𝐿𝐿. 
The objective function 𝐹𝐹(𝑛𝑛𝑖𝑖𝑖𝑖) describing the wagon-hours of accumulation and processing of wagons 
has the following form:  
 𝐹𝐹(𝑛𝑛𝑖𝑖𝑖𝑖) =∑((𝑐𝑐𝑚𝑚)𝑖𝑖𝑖𝑖𝑛𝑛𝑖𝑖𝑖𝑖 + 𝑃𝑃𝑖𝑖𝑖𝑖𝑡𝑡𝑖𝑖𝑖𝑖𝛴𝛴(𝑛𝑛𝑖𝑖𝑖𝑖)) → min

{𝑛𝑛𝑖𝑖𝑖𝑖}
  (1) 

where 
𝑛𝑛𝑖𝑖𝑖𝑖 = {1 if OD pair (𝑖𝑖, 𝑗𝑗) exists0 otherwise  

. It is also assumed that tij = 0, i.e. 
tij is a real number belonging to R. Then tij = (0, 
0, 0, 0)LR, 

 

An L-function (or an R-function) that satisfies these conditions is called a form function. The 
membership function of a fuzzy interval M can be represented by two functions, L and R, and four 
parameters: (𝑚𝑚,𝑚𝑚) ∈ 𝑅𝑅2 – kernel of fuzzy interval (fig. 1 and 2) and 𝛼𝛼, 𝛽𝛽 ≥ 0 – left and right fuzziness 
coefficients, given by:  

𝜇𝜇𝑝𝑝(𝑢𝑢) =

{
 
 
 
 𝐿𝐿 (

𝑚𝑚 − 𝑢𝑢
𝛼𝛼 )  𝑖𝑖𝑖𝑖 𝑢𝑢 ≤ 𝑚𝑚

1 𝑖𝑖𝑖𝑖 𝑚𝑚 ≤ 𝑢𝑢 ≤ 𝑚𝑚

𝑅𝑅(𝑢𝑢 −𝑚𝑚𝛽𝛽 )  𝑖𝑖𝑖𝑖 𝑢𝑢 ≥ 𝑚𝑚
 

It is convenient to divide wagon flows into two classes depending on their size. A first class consists of 
small flows, including null flows, i.e. 𝑃𝑃𝑖𝑖𝑖𝑖 = 0. A second class encompasses large flows, i.e. 𝑃𝑃𝑖𝑖𝑖𝑖 ≠ 0. 
Thus, a wagon flow 𝑃𝑃𝑖𝑖𝑖𝑖 can be represented as an (L – R) fuzzy interval of the following type: 𝑃𝑃𝑖𝑖𝑖𝑖 =
(𝑚𝑚,𝑚𝑚, 𝛼𝛼, 𝛽𝛽)𝐿𝐿𝐿𝐿. The functions L and R are of the form 𝐿𝐿 (𝑚𝑚−𝑢𝑢𝛼𝛼 ) = 1 − (1 − ℎ) (𝑚𝑚−𝑢𝑢𝛼𝛼 ) if 0 ≤ 𝑢𝑢 ≤ 𝑚𝑚, 

where h is the degree of likelihood that a given wagon flow 𝑁𝑁𝑖𝑖𝑖𝑖 = 0; 0 ≤ ℎ ≤ 1; 𝑅𝑅 (𝑢𝑢−𝑚𝑚𝛽𝛽 ) = 1 − (𝑢𝑢−𝑚𝑚𝛽𝛽 ) 
if 𝑢𝑢 ≥ 𝑚𝑚. Fuzzy first and second-class wagon flows are shown in Figures 1 and 2. 
 
For the first class of wagons it is assumed that ℎ = 0. Let the shortest route between two vertices of 
graph G be denoted by 𝑀𝑀𝑖𝑖𝑖𝑖. 
In this study, wagon flow size is expressed as an interval to take account of real-life instability of and 
fluctuations in railroad freight volumes. Wagon-hour savings for one wagon moved from station i 
through station j without processing is also shown as an (L – R) fuzzy interval with a kernel of most 
feasible values for a given station 𝑡𝑡𝑖𝑖𝑖𝑖 = (𝑡𝑡, 𝑡𝑡, 𝛼𝛼, 𝛽𝛽)𝐿𝐿𝐿𝐿. It is also assumed that 𝑡𝑡𝑖𝑖𝑖𝑖 = 0, i.e. 𝑡𝑡𝑖𝑖𝑖𝑖 is a real 
number belonging to R. Then 𝑡𝑡𝑖𝑖𝑖𝑖 = (0, 0, 0, 0)𝐿𝐿𝐿𝐿, ∀𝐿𝐿, 𝑅𝑅. 
Wagon-hour accumulation (𝑐𝑐𝑚𝑚)𝑖𝑖𝑖𝑖 related to assembling, on station i, a train serving one origin-
destination (OD) pair and travelling towards station j is also given by an (L – R) fuzzy interval. It is 
known that (𝑐𝑐𝑚𝑚)𝑖𝑖𝑖𝑖 = (𝑐𝑐𝑚𝑚)𝑖𝑖𝑝𝑝, where (𝑖𝑖, 𝑝𝑝) – first arc of route 𝑀𝑀𝑖𝑖𝑖𝑖.  
Savings 𝑇𝑇𝑖𝑖𝑖𝑖 associated with the movement of one wagon without processing, when the OD pair (𝑖𝑖, 𝑗𝑗) is 
singled out (branched off): 
 𝑇𝑇𝑖𝑖𝑖𝑖 = ∑ 𝑡𝑡𝑖𝑖𝐿𝐿𝐿𝐿∈𝑀𝑀𝑖𝑖𝑖𝑖

𝐿𝐿≠𝑖𝑖
; 

here, the sum applies to all stations located on the shortest route 𝑀𝑀𝑖𝑖𝑖𝑖 between stations i and j, and is 
calculated as a sum of fuzzy numbers. 
A sum of two (L–R) fuzzy intervals 𝑀𝑀 = (𝑚𝑚,𝑚𝑚,𝛼𝛼, 𝛽𝛽)𝐿𝐿𝐿𝐿 and 𝑁𝑁 = (𝑛𝑛, 𝑛𝑛, 𝛾𝛾, 𝛿𝛿)𝐿𝐿𝐿𝐿 is of the following form 
[1,3,4,5]: 𝑀𝑀+𝑁𝑁 = (𝑚𝑚 + 𝑛𝑛,𝑚𝑚 + 𝑛𝑛, 𝛼𝛼 + 𝛾𝛾, 𝛽𝛽 + 𝛿𝛿)𝐿𝐿𝐿𝐿. Given this, savings 𝑇𝑇𝑖𝑖𝑖𝑖 associated with the 
movement of one wagon, without processing, when the OD pair (𝑖𝑖, 𝑗𝑗) is branched off, also constitute an 
(L–R) fuzzy interval. Assuming that each wagon  𝑃𝑃𝑖𝑖𝑖𝑖 flow should be processed as fast as possible, we 
obtain total processing wagon-hours ∑ 𝑃𝑃𝑖𝑖𝑖𝑖𝑡𝑡𝑖𝑖𝑖𝑖𝛴𝛴𝑖𝑖,𝑖𝑖 , where 𝑡𝑡𝑖𝑖𝑖𝑖𝛴𝛴  is the length of the shortest route 𝑀𝑀𝑖𝑖𝑖𝑖𝑁𝑁 between 
stations i and j in the graph of processing operations N and is given by 𝑡𝑡𝑖𝑖𝑖𝑖𝛴𝛴 = ∑ 𝑡𝑡𝑖𝑖𝐿𝐿𝐿𝐿∈𝑀𝑀𝑖𝑖𝑖𝑖𝑁𝑁 . Also note that 

the operation of multiplication in sum ∑ 𝑃𝑃𝑖𝑖𝑖𝑖𝑡𝑡𝑖𝑖𝑖𝑖 𝛴𝛴𝑖𝑖,𝑖𝑖  involves fuzzy numbers (𝑃𝑃𝑖𝑖𝑖𝑖 𝑖𝑖 𝑡𝑡𝑖𝑖𝑖𝑖𝛴𝛴 − fuzzy intervals). 
According to [1,3,4,5], multiplication of (L – R) fuzzy intervals 𝑀𝑀 = (𝑚𝑚,𝑚𝑚,𝛼𝛼, 𝛽𝛽)𝐿𝐿𝐿𝐿 and 𝑁𝑁 =
(𝑛𝑛, 𝑛𝑛, 𝛾𝛾, 𝛿𝛿)𝐿𝐿𝐿𝐿takes the following form: 
𝑁𝑁 ∙ 𝑁𝑁 = (𝑚𝑚𝑛𝑛,𝑚𝑚𝑛𝑛,𝑚𝑚𝑛𝑛 − (𝑚𝑚 − 𝛼𝛼)(𝑛𝑛 − 𝛾𝛾), (𝑚𝑚 + 𝛽𝛽)(𝑛𝑛 + 𝛿𝛿) −𝑚𝑚𝑛𝑛)𝐿𝐿𝐿𝐿. 
The objective function 𝐹𝐹(𝑛𝑛𝑖𝑖𝑖𝑖) describing the wagon-hours of accumulation and processing of wagons 
has the following form:  
 𝐹𝐹(𝑛𝑛𝑖𝑖𝑖𝑖) =∑((𝑐𝑐𝑚𝑚)𝑖𝑖𝑖𝑖𝑛𝑛𝑖𝑖𝑖𝑖 + 𝑃𝑃𝑖𝑖𝑖𝑖𝑡𝑡𝑖𝑖𝑖𝑖𝛴𝛴(𝑛𝑛𝑖𝑖𝑖𝑖)) → min

{𝑛𝑛𝑖𝑖𝑖𝑖}
  (1) 

where 
𝑛𝑛𝑖𝑖𝑖𝑖 = {1 if OD pair (𝑖𝑖, 𝑗𝑗) exists0 otherwise  

Wagon-hour accumulation (cm)ij related to 
assembling, on station i, a train serving one ori-
gin-destination (OD) pair and travelling towards 
station j is also given by an (L – R) fuzzy interval. 
It is known that (cm)ij = (cm)ip, where (i, p)  – first 
arc of route Mij. 

Savings Tij. associated with the movement of 
one wagon without processing, when the OD pair  
(i, j) is singled out (branched off):

 

1 
 

𝐿𝐿(0) = 1, and also ∀𝑢𝑢 > 0, 𝐿𝐿(𝑢𝑢) < 1 ∀𝑢𝑢 < 1, 𝐿𝐿(𝑢𝑢) > 0, 
𝐿𝐿 = 0 or 𝐿𝐿(𝑢𝑢) > 0, ∀𝑢𝑢   𝑎𝑎𝑎𝑎𝑎𝑎     𝐿𝐿(+∞) = 0 

𝜇𝜇𝑝𝑝(𝑢𝑢) =

{
 
 
 
 𝐿𝐿 (

𝑚𝑚 − 𝑢𝑢
𝛼𝛼 )  𝑖𝑖𝑖𝑖 𝑢𝑢 ≤ 𝑚𝑚

1 𝑖𝑖𝑖𝑖 𝑚𝑚 ≤ 𝑢𝑢 ≤ 𝑚𝑚

𝑅𝑅 (𝑢𝑢 −𝑚𝑚𝛽𝛽 )  𝑖𝑖𝑖𝑖 𝑢𝑢 ≥ 𝑚𝑚
 

                                                                      𝑇𝑇𝑖𝑖𝑖𝑖 = ∑ 𝑡𝑡𝑖𝑖𝑖𝑖𝑖𝑖∈𝑀𝑀𝑖𝑖𝑖𝑖
𝑖𝑖≠𝑖𝑖

; 

 𝐹𝐹(𝑎𝑎𝑖𝑖𝑖𝑖) =∑((𝑐𝑐𝑚𝑚)𝑖𝑖𝑖𝑖𝑎𝑎𝑖𝑖𝑖𝑖 + 𝑃𝑃𝑖𝑖𝑖𝑖𝑡𝑡𝑖𝑖𝑖𝑖𝛴𝛴 (𝑎𝑎𝑖𝑖𝑖𝑖)) → min
{𝑛𝑛𝑖𝑖𝑖𝑖}

  (1) 

 

𝑎𝑎𝑖𝑖𝑖𝑖 = {1 if OD pair (𝑖𝑖, 𝑗𝑗) exists0 otherwise  

 

 𝜆𝜆𝑆𝑆𝑘𝑘 = 𝜆𝜆(𝐺𝐺𝑆𝑆𝑘𝑘) =∑(𝑐𝑐𝑚𝑚)𝑖𝑖𝑖𝑖𝑎𝑎𝑖𝑖𝑖𝑖(𝑁𝑁𝑆𝑆(𝑘𝑘)𝑘𝑘 ) +∑𝑃𝑃𝑖𝑖𝑖𝑖
𝑖𝑖,𝑖𝑖𝑖𝑖,𝑖𝑖

𝑡𝑡𝑖𝑖𝑖𝑖𝛴𝛴 (𝑁𝑁𝑆𝑆(𝑘𝑘)𝑘𝑘 ∪ �̃�𝑁𝑆𝑆(𝑘𝑘)𝑘𝑘 ) (2) 

 

 𝐹𝐹 (𝑁𝑁𝑆𝑆(𝑘𝑘)𝑘𝑘 ∪ (𝑖𝑖, 𝑗𝑗)) ≻ 𝐹𝐹(𝑁𝑁𝑆𝑆(𝑘𝑘)𝑘𝑘 ) (3) 

 

1). 𝐵𝐵𝑀𝑀([𝑁𝑁,+∞)) = 𝐵𝐵(𝑋𝑋 ≥ 𝑌𝑌) = 𝑠𝑠𝑢𝑢𝑠𝑠
𝑢𝑢
𝑚𝑚𝑖𝑖𝑎𝑎
 (𝜇𝜇𝑀𝑀(𝑢𝑢),

𝑠𝑠𝑢𝑢𝑠𝑠
𝑣𝑣 ≤ 𝑢𝑢(𝑣𝑣)) =

= 𝑠𝑠𝑢𝑢𝑠𝑠
𝑢𝑢 ≥ 𝑣𝑣

𝑚𝑚𝑖𝑖𝑎𝑎
 (𝜇𝜇𝑀𝑀(𝑢𝑢), 𝜇𝜇𝑁𝑁(𝑣𝑣))   

(4) 

 

2). 𝐵𝐵𝑀𝑀((𝑁𝑁,+∞)) = 𝐵𝐵(𝑋𝑋 > 𝑌𝑌) = 𝑠𝑠𝑢𝑢𝑠𝑠𝑢𝑢
𝑚𝑚𝑖𝑖𝑎𝑎
 (𝜇𝜇𝑀𝑀(𝑢𝑢), 𝑖𝑖𝑎𝑎𝑖𝑖(1 − 𝜇𝜇𝑁𝑁(𝑣𝑣))) =

= 𝑠𝑠𝑢𝑢𝑠𝑠𝑢𝑢
𝑖𝑖𝑎𝑎𝑖𝑖
𝑣𝑣 > 𝑢𝑢

𝑚𝑚𝑖𝑖𝑎𝑎
 (𝜇𝜇𝑀𝑀(𝑢𝑢), 𝜇𝜇𝑁𝑁(𝑣𝑣))   

(5) 

 

3). 𝐻𝐻𝑀𝑀([𝑁𝑁,+∞)) = 𝐻𝐻(𝑋𝑋 ≥ 𝑌𝑌) = 𝑖𝑖𝑎𝑎𝑖𝑖𝑢𝑢
𝑚𝑚𝑎𝑎𝑚𝑚
 (1 − 𝜇𝜇𝑀𝑀(𝑢𝑢),

𝑠𝑠𝑢𝑢𝑠𝑠
𝑣𝑣 ≤ 𝑢𝑢𝜇𝜇𝑁𝑁(𝑣𝑣)) =

= 𝑖𝑖𝑎𝑎𝑖𝑖𝑢𝑢
𝑠𝑠𝑢𝑢𝑠𝑠
𝑢𝑢 ≤ 𝑣𝑣

𝑚𝑚𝑎𝑎𝑚𝑚
 (1 − 𝜇𝜇𝑀𝑀(𝑢𝑢), 𝜇𝜇𝑁𝑁(𝑣𝑣))   

(6) 

 

4). 𝐻𝐻𝑀𝑀((𝑁𝑁, +∞)) = 𝐻𝐻(𝑋𝑋 > 𝑌𝑌) = 𝑖𝑖𝑎𝑎𝑖𝑖𝑢𝑢
𝑚𝑚𝑎𝑎𝑚𝑚
 (1 − 𝜇𝜇𝑀𝑀(𝑢𝑢), 𝑖𝑖𝑎𝑎𝑖𝑖(1 − 𝜇𝜇𝑁𝑁(𝑣𝑣))) =

= 1 − 𝑠𝑠𝑢𝑢𝑠𝑠
𝑢𝑢 ≤ 𝑣𝑣

𝑚𝑚𝑖𝑖𝑎𝑎
 (𝜇𝜇𝑀𝑀(𝑢𝑢), 𝜇𝜇𝑁𝑁(𝑣𝑣))   

(7) 

 

 

here, the sum applies to all stations located on the 
shortest route Mij between stations i and j, and is 
calculated as a sum of fuzzy numbers.

A sum of two (L–R) fuzzy intervals 

 

An L-function (or an R-function) that satisfies these conditions is called a form function. The 
membership function of a fuzzy interval M can be represented by two functions, L and R, and four 
parameters: (𝑚𝑚,𝑚𝑚) ∈ 𝑅𝑅2 – kernel of fuzzy interval (fig. 1 and 2) and 𝛼𝛼, 𝛽𝛽 ≥ 0 – left and right fuzziness 
coefficients, given by:  

𝜇𝜇𝑝𝑝(𝑢𝑢) =

{
 
 
 
 𝐿𝐿 (

𝑚𝑚 − 𝑢𝑢
𝛼𝛼 )  𝑖𝑖𝑖𝑖 𝑢𝑢 ≤ 𝑚𝑚

1 𝑖𝑖𝑖𝑖 𝑚𝑚 ≤ 𝑢𝑢 ≤ 𝑚𝑚

𝑅𝑅(𝑢𝑢 −𝑚𝑚𝛽𝛽 )  𝑖𝑖𝑖𝑖 𝑢𝑢 ≥ 𝑚𝑚
 

It is convenient to divide wagon flows into two classes depending on their size. A first class consists of 
small flows, including null flows, i.e. 𝑃𝑃𝑖𝑖𝑖𝑖 = 0. A second class encompasses large flows, i.e. 𝑃𝑃𝑖𝑖𝑖𝑖 ≠ 0. 
Thus, a wagon flow 𝑃𝑃𝑖𝑖𝑖𝑖 can be represented as an (L – R) fuzzy interval of the following type: 𝑃𝑃𝑖𝑖𝑖𝑖 =
(𝑚𝑚,𝑚𝑚, 𝛼𝛼, 𝛽𝛽)𝐿𝐿𝐿𝐿. The functions L and R are of the form 𝐿𝐿 (𝑚𝑚−𝑢𝑢𝛼𝛼 ) = 1 − (1 − ℎ) (𝑚𝑚−𝑢𝑢𝛼𝛼 ) if 0 ≤ 𝑢𝑢 ≤ 𝑚𝑚, 

where h is the degree of likelihood that a given wagon flow 𝑁𝑁𝑖𝑖𝑖𝑖 = 0; 0 ≤ ℎ ≤ 1; 𝑅𝑅 (𝑢𝑢−𝑚𝑚𝛽𝛽 ) = 1 − (𝑢𝑢−𝑚𝑚𝛽𝛽 ) 
if 𝑢𝑢 ≥ 𝑚𝑚. Fuzzy first and second-class wagon flows are shown in Figures 1 and 2. 
 
For the first class of wagons it is assumed that ℎ = 0. Let the shortest route between two vertices of 
graph G be denoted by 𝑀𝑀𝑖𝑖𝑖𝑖. 
In this study, wagon flow size is expressed as an interval to take account of real-life instability of and 
fluctuations in railroad freight volumes. Wagon-hour savings for one wagon moved from station i 
through station j without processing is also shown as an (L – R) fuzzy interval with a kernel of most 
feasible values for a given station 𝑡𝑡𝑖𝑖𝑖𝑖 = (𝑡𝑡, 𝑡𝑡, 𝛼𝛼, 𝛽𝛽)𝐿𝐿𝐿𝐿. It is also assumed that 𝑡𝑡𝑖𝑖𝑖𝑖 = 0, i.e. 𝑡𝑡𝑖𝑖𝑖𝑖 is a real 
number belonging to R. Then 𝑡𝑡𝑖𝑖𝑖𝑖 = (0, 0, 0, 0)𝐿𝐿𝐿𝐿, ∀𝐿𝐿, 𝑅𝑅. 
Wagon-hour accumulation (𝑐𝑐𝑚𝑚)𝑖𝑖𝑖𝑖 related to assembling, on station i, a train serving one origin-
destination (OD) pair and travelling towards station j is also given by an (L – R) fuzzy interval. It is 
known that (𝑐𝑐𝑚𝑚)𝑖𝑖𝑖𝑖 = (𝑐𝑐𝑚𝑚)𝑖𝑖𝑝𝑝, where (𝑖𝑖, 𝑝𝑝) – first arc of route 𝑀𝑀𝑖𝑖𝑖𝑖.  
Savings 𝑇𝑇𝑖𝑖𝑖𝑖 associated with the movement of one wagon without processing, when the OD pair (𝑖𝑖, 𝑗𝑗) is 
singled out (branched off): 
 𝑇𝑇𝑖𝑖𝑖𝑖 = ∑ 𝑡𝑡𝑖𝑖𝐿𝐿𝐿𝐿∈𝑀𝑀𝑖𝑖𝑖𝑖

𝐿𝐿≠𝑖𝑖
; 

here, the sum applies to all stations located on the shortest route 𝑀𝑀𝑖𝑖𝑖𝑖 between stations i and j, and is 
calculated as a sum of fuzzy numbers. 
A sum of two (L–R) fuzzy intervals 𝑀𝑀 = (𝑚𝑚,𝑚𝑚,𝛼𝛼, 𝛽𝛽)𝐿𝐿𝐿𝐿 and 𝑁𝑁 = (𝑛𝑛, 𝑛𝑛, 𝛾𝛾, 𝛿𝛿)𝐿𝐿𝐿𝐿 is of the following form 
[1,3,4,5]: 𝑀𝑀+𝑁𝑁 = (𝑚𝑚 + 𝑛𝑛,𝑚𝑚 + 𝑛𝑛, 𝛼𝛼 + 𝛾𝛾, 𝛽𝛽 + 𝛿𝛿)𝐿𝐿𝐿𝐿. Given this, savings 𝑇𝑇𝑖𝑖𝑖𝑖 associated with the 
movement of one wagon, without processing, when the OD pair (𝑖𝑖, 𝑗𝑗) is branched off, also constitute an 
(L–R) fuzzy interval. Assuming that each wagon  𝑃𝑃𝑖𝑖𝑖𝑖 flow should be processed as fast as possible, we 
obtain total processing wagon-hours ∑ 𝑃𝑃𝑖𝑖𝑖𝑖𝑡𝑡𝑖𝑖𝑖𝑖𝛴𝛴𝑖𝑖,𝑖𝑖 , where 𝑡𝑡𝑖𝑖𝑖𝑖𝛴𝛴  is the length of the shortest route 𝑀𝑀𝑖𝑖𝑖𝑖𝑁𝑁 between 
stations i and j in the graph of processing operations N and is given by 𝑡𝑡𝑖𝑖𝑖𝑖𝛴𝛴 = ∑ 𝑡𝑡𝑖𝑖𝐿𝐿𝐿𝐿∈𝑀𝑀𝑖𝑖𝑖𝑖𝑁𝑁 . Also note that 

the operation of multiplication in sum ∑ 𝑃𝑃𝑖𝑖𝑖𝑖𝑡𝑡𝑖𝑖𝑖𝑖 𝛴𝛴𝑖𝑖,𝑖𝑖  involves fuzzy numbers (𝑃𝑃𝑖𝑖𝑖𝑖 𝑖𝑖 𝑡𝑡𝑖𝑖𝑖𝑖𝛴𝛴 − fuzzy intervals). 
According to [1,3,4,5], multiplication of (L – R) fuzzy intervals 𝑀𝑀 = (𝑚𝑚,𝑚𝑚,𝛼𝛼, 𝛽𝛽)𝐿𝐿𝐿𝐿 and 𝑁𝑁 =
(𝑛𝑛, 𝑛𝑛, 𝛾𝛾, 𝛿𝛿)𝐿𝐿𝐿𝐿takes the following form: 
𝑁𝑁 ∙ 𝑁𝑁 = (𝑚𝑚𝑛𝑛,𝑚𝑚𝑛𝑛,𝑚𝑚𝑛𝑛 − (𝑚𝑚 − 𝛼𝛼)(𝑛𝑛 − 𝛾𝛾), (𝑚𝑚 + 𝛽𝛽)(𝑛𝑛 + 𝛿𝛿) −𝑚𝑚𝑛𝑛)𝐿𝐿𝐿𝐿. 
The objective function 𝐹𝐹(𝑛𝑛𝑖𝑖𝑖𝑖) describing the wagon-hours of accumulation and processing of wagons 
has the following form:  
 𝐹𝐹(𝑛𝑛𝑖𝑖𝑖𝑖) =∑((𝑐𝑐𝑚𝑚)𝑖𝑖𝑖𝑖𝑛𝑛𝑖𝑖𝑖𝑖 + 𝑃𝑃𝑖𝑖𝑖𝑖𝑡𝑡𝑖𝑖𝑖𝑖𝛴𝛴(𝑛𝑛𝑖𝑖𝑖𝑖)) → min

{𝑛𝑛𝑖𝑖𝑖𝑖}
  (1) 

where 
𝑛𝑛𝑖𝑖𝑖𝑖 = {1 if OD pair (𝑖𝑖, 𝑗𝑗) exists0 otherwise  

 and 

 

An L-function (or an R-function) that satisfies these conditions is called a form function. The 
membership function of a fuzzy interval M can be represented by two functions, L and R, and four 
parameters: (𝑚𝑚,𝑚𝑚) ∈ 𝑅𝑅2 – kernel of fuzzy interval (fig. 1 and 2) and 𝛼𝛼, 𝛽𝛽 ≥ 0 – left and right fuzziness 
coefficients, given by:  

𝜇𝜇𝑝𝑝(𝑢𝑢) =

{
 
 
 
 𝐿𝐿 (

𝑚𝑚 − 𝑢𝑢
𝛼𝛼 )  𝑖𝑖𝑖𝑖 𝑢𝑢 ≤ 𝑚𝑚

1 𝑖𝑖𝑖𝑖 𝑚𝑚 ≤ 𝑢𝑢 ≤ 𝑚𝑚

𝑅𝑅(𝑢𝑢 −𝑚𝑚𝛽𝛽 )  𝑖𝑖𝑖𝑖 𝑢𝑢 ≥ 𝑚𝑚
 

It is convenient to divide wagon flows into two classes depending on their size. A first class consists of 
small flows, including null flows, i.e. 𝑃𝑃𝑖𝑖𝑖𝑖 = 0. A second class encompasses large flows, i.e. 𝑃𝑃𝑖𝑖𝑖𝑖 ≠ 0. 
Thus, a wagon flow 𝑃𝑃𝑖𝑖𝑖𝑖 can be represented as an (L – R) fuzzy interval of the following type: 𝑃𝑃𝑖𝑖𝑖𝑖 =
(𝑚𝑚,𝑚𝑚, 𝛼𝛼, 𝛽𝛽)𝐿𝐿𝐿𝐿. The functions L and R are of the form 𝐿𝐿 (𝑚𝑚−𝑢𝑢𝛼𝛼 ) = 1 − (1 − ℎ) (𝑚𝑚−𝑢𝑢𝛼𝛼 ) if 0 ≤ 𝑢𝑢 ≤ 𝑚𝑚, 

where h is the degree of likelihood that a given wagon flow 𝑁𝑁𝑖𝑖𝑖𝑖 = 0; 0 ≤ ℎ ≤ 1; 𝑅𝑅 (𝑢𝑢−𝑚𝑚𝛽𝛽 ) = 1 − (𝑢𝑢−𝑚𝑚𝛽𝛽 ) 
if 𝑢𝑢 ≥ 𝑚𝑚. Fuzzy first and second-class wagon flows are shown in Figures 1 and 2. 
 
For the first class of wagons it is assumed that ℎ = 0. Let the shortest route between two vertices of 
graph G be denoted by 𝑀𝑀𝑖𝑖𝑖𝑖. 
In this study, wagon flow size is expressed as an interval to take account of real-life instability of and 
fluctuations in railroad freight volumes. Wagon-hour savings for one wagon moved from station i 
through station j without processing is also shown as an (L – R) fuzzy interval with a kernel of most 
feasible values for a given station 𝑡𝑡𝑖𝑖𝑖𝑖 = (𝑡𝑡, 𝑡𝑡, 𝛼𝛼, 𝛽𝛽)𝐿𝐿𝐿𝐿. It is also assumed that 𝑡𝑡𝑖𝑖𝑖𝑖 = 0, i.e. 𝑡𝑡𝑖𝑖𝑖𝑖 is a real 
number belonging to R. Then 𝑡𝑡𝑖𝑖𝑖𝑖 = (0, 0, 0, 0)𝐿𝐿𝐿𝐿, ∀𝐿𝐿, 𝑅𝑅. 
Wagon-hour accumulation (𝑐𝑐𝑚𝑚)𝑖𝑖𝑖𝑖 related to assembling, on station i, a train serving one origin-
destination (OD) pair and travelling towards station j is also given by an (L – R) fuzzy interval. It is 
known that (𝑐𝑐𝑚𝑚)𝑖𝑖𝑖𝑖 = (𝑐𝑐𝑚𝑚)𝑖𝑖𝑝𝑝, where (𝑖𝑖, 𝑝𝑝) – first arc of route 𝑀𝑀𝑖𝑖𝑖𝑖.  
Savings 𝑇𝑇𝑖𝑖𝑖𝑖 associated with the movement of one wagon without processing, when the OD pair (𝑖𝑖, 𝑗𝑗) is 
singled out (branched off): 
 𝑇𝑇𝑖𝑖𝑖𝑖 = ∑ 𝑡𝑡𝑖𝑖𝐿𝐿𝐿𝐿∈𝑀𝑀𝑖𝑖𝑖𝑖

𝐿𝐿≠𝑖𝑖
; 

here, the sum applies to all stations located on the shortest route 𝑀𝑀𝑖𝑖𝑖𝑖 between stations i and j, and is 
calculated as a sum of fuzzy numbers. 
A sum of two (L–R) fuzzy intervals 𝑀𝑀 = (𝑚𝑚,𝑚𝑚,𝛼𝛼, 𝛽𝛽)𝐿𝐿𝐿𝐿 and 𝑁𝑁 = (𝑛𝑛, 𝑛𝑛, 𝛾𝛾, 𝛿𝛿)𝐿𝐿𝐿𝐿 is of the following form 
[1,3,4,5]: 𝑀𝑀+𝑁𝑁 = (𝑚𝑚 + 𝑛𝑛,𝑚𝑚 + 𝑛𝑛, 𝛼𝛼 + 𝛾𝛾, 𝛽𝛽 + 𝛿𝛿)𝐿𝐿𝐿𝐿. Given this, savings 𝑇𝑇𝑖𝑖𝑖𝑖 associated with the 
movement of one wagon, without processing, when the OD pair (𝑖𝑖, 𝑗𝑗) is branched off, also constitute an 
(L–R) fuzzy interval. Assuming that each wagon  𝑃𝑃𝑖𝑖𝑖𝑖 flow should be processed as fast as possible, we 
obtain total processing wagon-hours ∑ 𝑃𝑃𝑖𝑖𝑖𝑖𝑡𝑡𝑖𝑖𝑖𝑖𝛴𝛴𝑖𝑖,𝑖𝑖 , where 𝑡𝑡𝑖𝑖𝑖𝑖𝛴𝛴  is the length of the shortest route 𝑀𝑀𝑖𝑖𝑖𝑖𝑁𝑁 between 
stations i and j in the graph of processing operations N and is given by 𝑡𝑡𝑖𝑖𝑖𝑖𝛴𝛴 = ∑ 𝑡𝑡𝑖𝑖𝐿𝐿𝐿𝐿∈𝑀𝑀𝑖𝑖𝑖𝑖𝑁𝑁 . Also note that 

the operation of multiplication in sum ∑ 𝑃𝑃𝑖𝑖𝑖𝑖𝑡𝑡𝑖𝑖𝑖𝑖 𝛴𝛴𝑖𝑖,𝑖𝑖  involves fuzzy numbers (𝑃𝑃𝑖𝑖𝑖𝑖 𝑖𝑖 𝑡𝑡𝑖𝑖𝑖𝑖𝛴𝛴 − fuzzy intervals). 
According to [1,3,4,5], multiplication of (L – R) fuzzy intervals 𝑀𝑀 = (𝑚𝑚,𝑚𝑚,𝛼𝛼, 𝛽𝛽)𝐿𝐿𝐿𝐿 and 𝑁𝑁 =
(𝑛𝑛, 𝑛𝑛, 𝛾𝛾, 𝛿𝛿)𝐿𝐿𝐿𝐿takes the following form: 
𝑁𝑁 ∙ 𝑁𝑁 = (𝑚𝑚𝑛𝑛,𝑚𝑚𝑛𝑛,𝑚𝑚𝑛𝑛 − (𝑚𝑚 − 𝛼𝛼)(𝑛𝑛 − 𝛾𝛾), (𝑚𝑚 + 𝛽𝛽)(𝑛𝑛 + 𝛿𝛿) −𝑚𝑚𝑛𝑛)𝐿𝐿𝐿𝐿. 
The objective function 𝐹𝐹(𝑛𝑛𝑖𝑖𝑖𝑖) describing the wagon-hours of accumulation and processing of wagons 
has the following form:  
 𝐹𝐹(𝑛𝑛𝑖𝑖𝑖𝑖) =∑((𝑐𝑐𝑚𝑚)𝑖𝑖𝑖𝑖𝑛𝑛𝑖𝑖𝑖𝑖 + 𝑃𝑃𝑖𝑖𝑖𝑖𝑡𝑡𝑖𝑖𝑖𝑖𝛴𝛴(𝑛𝑛𝑖𝑖𝑖𝑖)) → min

{𝑛𝑛𝑖𝑖𝑖𝑖}
  (1) 

where 
𝑛𝑛𝑖𝑖𝑖𝑖 = {1 if OD pair (𝑖𝑖, 𝑗𝑗) exists0 otherwise  

 is 
of the following form [1, 3, 4, 5]: M + N = 

 

An L-function (or an R-function) that satisfies these conditions is called a form function. The 
membership function of a fuzzy interval M can be represented by two functions, L and R, and four 
parameters: (𝑚𝑚,𝑚𝑚) ∈ 𝑅𝑅2 – kernel of fuzzy interval (fig. 1 and 2) and 𝛼𝛼, 𝛽𝛽 ≥ 0 – left and right fuzziness 
coefficients, given by:  

𝜇𝜇𝑝𝑝(𝑢𝑢) =

{
 
 
 
 𝐿𝐿 (

𝑚𝑚 − 𝑢𝑢
𝛼𝛼 )  𝑖𝑖𝑖𝑖 𝑢𝑢 ≤ 𝑚𝑚

1 𝑖𝑖𝑖𝑖 𝑚𝑚 ≤ 𝑢𝑢 ≤ 𝑚𝑚

𝑅𝑅(𝑢𝑢 −𝑚𝑚𝛽𝛽 )  𝑖𝑖𝑖𝑖 𝑢𝑢 ≥ 𝑚𝑚
 

It is convenient to divide wagon flows into two classes depending on their size. A first class consists of 
small flows, including null flows, i.e. 𝑃𝑃𝑖𝑖𝑖𝑖 = 0. A second class encompasses large flows, i.e. 𝑃𝑃𝑖𝑖𝑖𝑖 ≠ 0. 
Thus, a wagon flow 𝑃𝑃𝑖𝑖𝑖𝑖 can be represented as an (L – R) fuzzy interval of the following type: 𝑃𝑃𝑖𝑖𝑖𝑖 =
(𝑚𝑚,𝑚𝑚, 𝛼𝛼, 𝛽𝛽)𝐿𝐿𝐿𝐿. The functions L and R are of the form 𝐿𝐿 (𝑚𝑚−𝑢𝑢𝛼𝛼 ) = 1 − (1 − ℎ) (𝑚𝑚−𝑢𝑢𝛼𝛼 ) if 0 ≤ 𝑢𝑢 ≤ 𝑚𝑚, 

where h is the degree of likelihood that a given wagon flow 𝑁𝑁𝑖𝑖𝑖𝑖 = 0; 0 ≤ ℎ ≤ 1; 𝑅𝑅 (𝑢𝑢−𝑚𝑚𝛽𝛽 ) = 1 − (𝑢𝑢−𝑚𝑚𝛽𝛽 ) 
if 𝑢𝑢 ≥ 𝑚𝑚. Fuzzy first and second-class wagon flows are shown in Figures 1 and 2. 
 
For the first class of wagons it is assumed that ℎ = 0. Let the shortest route between two vertices of 
graph G be denoted by 𝑀𝑀𝑖𝑖𝑖𝑖. 
In this study, wagon flow size is expressed as an interval to take account of real-life instability of and 
fluctuations in railroad freight volumes. Wagon-hour savings for one wagon moved from station i 
through station j without processing is also shown as an (L – R) fuzzy interval with a kernel of most 
feasible values for a given station 𝑡𝑡𝑖𝑖𝑖𝑖 = (𝑡𝑡, 𝑡𝑡, 𝛼𝛼, 𝛽𝛽)𝐿𝐿𝐿𝐿. It is also assumed that 𝑡𝑡𝑖𝑖𝑖𝑖 = 0, i.e. 𝑡𝑡𝑖𝑖𝑖𝑖 is a real 
number belonging to R. Then 𝑡𝑡𝑖𝑖𝑖𝑖 = (0, 0, 0, 0)𝐿𝐿𝐿𝐿, ∀𝐿𝐿, 𝑅𝑅. 
Wagon-hour accumulation (𝑐𝑐𝑚𝑚)𝑖𝑖𝑖𝑖 related to assembling, on station i, a train serving one origin-
destination (OD) pair and travelling towards station j is also given by an (L – R) fuzzy interval. It is 
known that (𝑐𝑐𝑚𝑚)𝑖𝑖𝑖𝑖 = (𝑐𝑐𝑚𝑚)𝑖𝑖𝑝𝑝, where (𝑖𝑖, 𝑝𝑝) – first arc of route 𝑀𝑀𝑖𝑖𝑖𝑖.  
Savings 𝑇𝑇𝑖𝑖𝑖𝑖 associated with the movement of one wagon without processing, when the OD pair (𝑖𝑖, 𝑗𝑗) is 
singled out (branched off): 
 𝑇𝑇𝑖𝑖𝑖𝑖 = ∑ 𝑡𝑡𝑖𝑖𝐿𝐿𝐿𝐿∈𝑀𝑀𝑖𝑖𝑖𝑖

𝐿𝐿≠𝑖𝑖
; 

here, the sum applies to all stations located on the shortest route 𝑀𝑀𝑖𝑖𝑖𝑖 between stations i and j, and is 
calculated as a sum of fuzzy numbers. 
A sum of two (L–R) fuzzy intervals 𝑀𝑀 = (𝑚𝑚,𝑚𝑚,𝛼𝛼, 𝛽𝛽)𝐿𝐿𝐿𝐿 and 𝑁𝑁 = (𝑛𝑛, 𝑛𝑛, 𝛾𝛾, 𝛿𝛿)𝐿𝐿𝐿𝐿 is of the following form 
[1,3,4,5]: 𝑀𝑀+𝑁𝑁 = (𝑚𝑚 + 𝑛𝑛,𝑚𝑚 + 𝑛𝑛, 𝛼𝛼 + 𝛾𝛾, 𝛽𝛽 + 𝛿𝛿)𝐿𝐿𝐿𝐿. Given this, savings 𝑇𝑇𝑖𝑖𝑖𝑖 associated with the 
movement of one wagon, without processing, when the OD pair (𝑖𝑖, 𝑗𝑗) is branched off, also constitute an 
(L–R) fuzzy interval. Assuming that each wagon  𝑃𝑃𝑖𝑖𝑖𝑖 flow should be processed as fast as possible, we 
obtain total processing wagon-hours ∑ 𝑃𝑃𝑖𝑖𝑖𝑖𝑡𝑡𝑖𝑖𝑖𝑖𝛴𝛴𝑖𝑖,𝑖𝑖 , where 𝑡𝑡𝑖𝑖𝑖𝑖𝛴𝛴  is the length of the shortest route 𝑀𝑀𝑖𝑖𝑖𝑖𝑁𝑁 between 
stations i and j in the graph of processing operations N and is given by 𝑡𝑡𝑖𝑖𝑖𝑖𝛴𝛴 = ∑ 𝑡𝑡𝑖𝑖𝐿𝐿𝐿𝐿∈𝑀𝑀𝑖𝑖𝑖𝑖𝑁𝑁 . Also note that 

the operation of multiplication in sum ∑ 𝑃𝑃𝑖𝑖𝑖𝑖𝑡𝑡𝑖𝑖𝑖𝑖 𝛴𝛴𝑖𝑖,𝑖𝑖  involves fuzzy numbers (𝑃𝑃𝑖𝑖𝑖𝑖 𝑖𝑖 𝑡𝑡𝑖𝑖𝑖𝑖𝛴𝛴 − fuzzy intervals). 
According to [1,3,4,5], multiplication of (L – R) fuzzy intervals 𝑀𝑀 = (𝑚𝑚,𝑚𝑚,𝛼𝛼, 𝛽𝛽)𝐿𝐿𝐿𝐿 and 𝑁𝑁 =
(𝑛𝑛, 𝑛𝑛, 𝛾𝛾, 𝛿𝛿)𝐿𝐿𝐿𝐿takes the following form: 
𝑁𝑁 ∙ 𝑁𝑁 = (𝑚𝑚𝑛𝑛,𝑚𝑚𝑛𝑛,𝑚𝑚𝑛𝑛 − (𝑚𝑚 − 𝛼𝛼)(𝑛𝑛 − 𝛾𝛾), (𝑚𝑚 + 𝛽𝛽)(𝑛𝑛 + 𝛿𝛿) −𝑚𝑚𝑛𝑛)𝐿𝐿𝐿𝐿. 
The objective function 𝐹𝐹(𝑛𝑛𝑖𝑖𝑖𝑖) describing the wagon-hours of accumulation and processing of wagons 
has the following form:  
 𝐹𝐹(𝑛𝑛𝑖𝑖𝑖𝑖) =∑((𝑐𝑐𝑚𝑚)𝑖𝑖𝑖𝑖𝑛𝑛𝑖𝑖𝑖𝑖 + 𝑃𝑃𝑖𝑖𝑖𝑖𝑡𝑡𝑖𝑖𝑖𝑖𝛴𝛴(𝑛𝑛𝑖𝑖𝑖𝑖)) → min

{𝑛𝑛𝑖𝑖𝑖𝑖}
  (1) 

where 
𝑛𝑛𝑖𝑖𝑖𝑖 = {1 if OD pair (𝑖𝑖, 𝑗𝑗) exists0 otherwise  

. Given this, sav-
ings Tij associated with the movement of one wag-
on, without processing, when the OD pair (i, j) is 
branched off, also constitute an (L–R) fuzzy in-
terval. Assuming that each wagon Pij flow should 
be processed as fast as possible, we obtain total 
processing wagon-hours 

 

An L-function (or an R-function) that satisfies these conditions is called a form function. The 
membership function of a fuzzy interval M can be represented by two functions, L and R, and four 
parameters: (𝑚𝑚,𝑚𝑚) ∈ 𝑅𝑅2 – kernel of fuzzy interval (fig. 1 and 2) and 𝛼𝛼, 𝛽𝛽 ≥ 0 – left and right fuzziness 
coefficients, given by:  

𝜇𝜇𝑝𝑝(𝑢𝑢) =

{
 
 
 
 𝐿𝐿 (

𝑚𝑚 − 𝑢𝑢
𝛼𝛼 )  𝑖𝑖𝑖𝑖 𝑢𝑢 ≤ 𝑚𝑚

1 𝑖𝑖𝑖𝑖 𝑚𝑚 ≤ 𝑢𝑢 ≤ 𝑚𝑚

𝑅𝑅(𝑢𝑢 −𝑚𝑚𝛽𝛽 )  𝑖𝑖𝑖𝑖 𝑢𝑢 ≥ 𝑚𝑚
 

It is convenient to divide wagon flows into two classes depending on their size. A first class consists of 
small flows, including null flows, i.e. 𝑃𝑃𝑖𝑖𝑖𝑖 = 0. A second class encompasses large flows, i.e. 𝑃𝑃𝑖𝑖𝑖𝑖 ≠ 0. 
Thus, a wagon flow 𝑃𝑃𝑖𝑖𝑖𝑖 can be represented as an (L – R) fuzzy interval of the following type: 𝑃𝑃𝑖𝑖𝑖𝑖 =
(𝑚𝑚,𝑚𝑚, 𝛼𝛼, 𝛽𝛽)𝐿𝐿𝐿𝐿. The functions L and R are of the form 𝐿𝐿 (𝑚𝑚−𝑢𝑢𝛼𝛼 ) = 1 − (1 − ℎ) (𝑚𝑚−𝑢𝑢𝛼𝛼 ) if 0 ≤ 𝑢𝑢 ≤ 𝑚𝑚, 

where h is the degree of likelihood that a given wagon flow 𝑁𝑁𝑖𝑖𝑖𝑖 = 0; 0 ≤ ℎ ≤ 1; 𝑅𝑅 (𝑢𝑢−𝑚𝑚𝛽𝛽 ) = 1 − (𝑢𝑢−𝑚𝑚𝛽𝛽 ) 
if 𝑢𝑢 ≥ 𝑚𝑚. Fuzzy first and second-class wagon flows are shown in Figures 1 and 2. 
 
For the first class of wagons it is assumed that ℎ = 0. Let the shortest route between two vertices of 
graph G be denoted by 𝑀𝑀𝑖𝑖𝑖𝑖. 
In this study, wagon flow size is expressed as an interval to take account of real-life instability of and 
fluctuations in railroad freight volumes. Wagon-hour savings for one wagon moved from station i 
through station j without processing is also shown as an (L – R) fuzzy interval with a kernel of most 
feasible values for a given station 𝑡𝑡𝑖𝑖𝑖𝑖 = (𝑡𝑡, 𝑡𝑡, 𝛼𝛼, 𝛽𝛽)𝐿𝐿𝐿𝐿. It is also assumed that 𝑡𝑡𝑖𝑖𝑖𝑖 = 0, i.e. 𝑡𝑡𝑖𝑖𝑖𝑖 is a real 
number belonging to R. Then 𝑡𝑡𝑖𝑖𝑖𝑖 = (0, 0, 0, 0)𝐿𝐿𝐿𝐿, ∀𝐿𝐿, 𝑅𝑅. 
Wagon-hour accumulation (𝑐𝑐𝑚𝑚)𝑖𝑖𝑖𝑖 related to assembling, on station i, a train serving one origin-
destination (OD) pair and travelling towards station j is also given by an (L – R) fuzzy interval. It is 
known that (𝑐𝑐𝑚𝑚)𝑖𝑖𝑖𝑖 = (𝑐𝑐𝑚𝑚)𝑖𝑖𝑝𝑝, where (𝑖𝑖, 𝑝𝑝) – first arc of route 𝑀𝑀𝑖𝑖𝑖𝑖.  
Savings 𝑇𝑇𝑖𝑖𝑖𝑖 associated with the movement of one wagon without processing, when the OD pair (𝑖𝑖, 𝑗𝑗) is 
singled out (branched off): 
 𝑇𝑇𝑖𝑖𝑖𝑖 = ∑ 𝑡𝑡𝑖𝑖𝐿𝐿𝐿𝐿∈𝑀𝑀𝑖𝑖𝑖𝑖

𝐿𝐿≠𝑖𝑖
; 

here, the sum applies to all stations located on the shortest route 𝑀𝑀𝑖𝑖𝑖𝑖 between stations i and j, and is 
calculated as a sum of fuzzy numbers. 
A sum of two (L–R) fuzzy intervals 𝑀𝑀 = (𝑚𝑚,𝑚𝑚,𝛼𝛼, 𝛽𝛽)𝐿𝐿𝐿𝐿 and 𝑁𝑁 = (𝑛𝑛, 𝑛𝑛, 𝛾𝛾, 𝛿𝛿)𝐿𝐿𝐿𝐿 is of the following form 
[1,3,4,5]: 𝑀𝑀+𝑁𝑁 = (𝑚𝑚 + 𝑛𝑛,𝑚𝑚 + 𝑛𝑛, 𝛼𝛼 + 𝛾𝛾, 𝛽𝛽 + 𝛿𝛿)𝐿𝐿𝐿𝐿. Given this, savings 𝑇𝑇𝑖𝑖𝑖𝑖 associated with the 
movement of one wagon, without processing, when the OD pair (𝑖𝑖, 𝑗𝑗) is branched off, also constitute an 
(L–R) fuzzy interval. Assuming that each wagon  𝑃𝑃𝑖𝑖𝑖𝑖 flow should be processed as fast as possible, we 
obtain total processing wagon-hours ∑ 𝑃𝑃𝑖𝑖𝑖𝑖𝑡𝑡𝑖𝑖𝑖𝑖𝛴𝛴𝑖𝑖,𝑖𝑖 , where 𝑡𝑡𝑖𝑖𝑖𝑖𝛴𝛴  is the length of the shortest route 𝑀𝑀𝑖𝑖𝑖𝑖𝑁𝑁 between 
stations i and j in the graph of processing operations N and is given by 𝑡𝑡𝑖𝑖𝑖𝑖𝛴𝛴 = ∑ 𝑡𝑡𝑖𝑖𝐿𝐿𝐿𝐿∈𝑀𝑀𝑖𝑖𝑖𝑖𝑁𝑁 . Also note that 

the operation of multiplication in sum ∑ 𝑃𝑃𝑖𝑖𝑖𝑖𝑡𝑡𝑖𝑖𝑖𝑖 𝛴𝛴𝑖𝑖,𝑖𝑖  involves fuzzy numbers (𝑃𝑃𝑖𝑖𝑖𝑖 𝑖𝑖 𝑡𝑡𝑖𝑖𝑖𝑖𝛴𝛴 − fuzzy intervals). 
According to [1,3,4,5], multiplication of (L – R) fuzzy intervals 𝑀𝑀 = (𝑚𝑚,𝑚𝑚,𝛼𝛼, 𝛽𝛽)𝐿𝐿𝐿𝐿 and 𝑁𝑁 =
(𝑛𝑛, 𝑛𝑛, 𝛾𝛾, 𝛿𝛿)𝐿𝐿𝐿𝐿takes the following form: 
𝑁𝑁 ∙ 𝑁𝑁 = (𝑚𝑚𝑛𝑛,𝑚𝑚𝑛𝑛,𝑚𝑚𝑛𝑛 − (𝑚𝑚 − 𝛼𝛼)(𝑛𝑛 − 𝛾𝛾), (𝑚𝑚 + 𝛽𝛽)(𝑛𝑛 + 𝛿𝛿) −𝑚𝑚𝑛𝑛)𝐿𝐿𝐿𝐿. 
The objective function 𝐹𝐹(𝑛𝑛𝑖𝑖𝑖𝑖) describing the wagon-hours of accumulation and processing of wagons 
has the following form:  
 𝐹𝐹(𝑛𝑛𝑖𝑖𝑖𝑖) =∑((𝑐𝑐𝑚𝑚)𝑖𝑖𝑖𝑖𝑛𝑛𝑖𝑖𝑖𝑖 + 𝑃𝑃𝑖𝑖𝑖𝑖𝑡𝑡𝑖𝑖𝑖𝑖𝛴𝛴(𝑛𝑛𝑖𝑖𝑖𝑖)) → min

{𝑛𝑛𝑖𝑖𝑖𝑖}
  (1) 

where 
𝑛𝑛𝑖𝑖𝑖𝑖 = {1 if OD pair (𝑖𝑖, 𝑗𝑗) exists0 otherwise  

, where 

 

An L-function (or an R-function) that satisfies these conditions is called a form function. The 
membership function of a fuzzy interval M can be represented by two functions, L and R, and four 
parameters: (𝑚𝑚,𝑚𝑚) ∈ 𝑅𝑅2 – kernel of fuzzy interval (fig. 1 and 2) and 𝛼𝛼, 𝛽𝛽 ≥ 0 – left and right fuzziness 
coefficients, given by:  

𝜇𝜇𝑝𝑝(𝑢𝑢) =

{
 
 
 
 𝐿𝐿 (

𝑚𝑚 − 𝑢𝑢
𝛼𝛼 )  𝑖𝑖𝑖𝑖 𝑢𝑢 ≤ 𝑚𝑚

1 𝑖𝑖𝑖𝑖 𝑚𝑚 ≤ 𝑢𝑢 ≤ 𝑚𝑚

𝑅𝑅(𝑢𝑢 −𝑚𝑚𝛽𝛽 )  𝑖𝑖𝑖𝑖 𝑢𝑢 ≥ 𝑚𝑚
 

It is convenient to divide wagon flows into two classes depending on their size. A first class consists of 
small flows, including null flows, i.e. 𝑃𝑃𝑖𝑖𝑖𝑖 = 0. A second class encompasses large flows, i.e. 𝑃𝑃𝑖𝑖𝑖𝑖 ≠ 0. 
Thus, a wagon flow 𝑃𝑃𝑖𝑖𝑖𝑖 can be represented as an (L – R) fuzzy interval of the following type: 𝑃𝑃𝑖𝑖𝑖𝑖 =
(𝑚𝑚,𝑚𝑚, 𝛼𝛼, 𝛽𝛽)𝐿𝐿𝐿𝐿. The functions L and R are of the form 𝐿𝐿 (𝑚𝑚−𝑢𝑢𝛼𝛼 ) = 1 − (1 − ℎ) (𝑚𝑚−𝑢𝑢𝛼𝛼 ) if 0 ≤ 𝑢𝑢 ≤ 𝑚𝑚, 

where h is the degree of likelihood that a given wagon flow 𝑁𝑁𝑖𝑖𝑖𝑖 = 0; 0 ≤ ℎ ≤ 1; 𝑅𝑅 (𝑢𝑢−𝑚𝑚𝛽𝛽 ) = 1 − (𝑢𝑢−𝑚𝑚𝛽𝛽 ) 
if 𝑢𝑢 ≥ 𝑚𝑚. Fuzzy first and second-class wagon flows are shown in Figures 1 and 2. 
 
For the first class of wagons it is assumed that ℎ = 0. Let the shortest route between two vertices of 
graph G be denoted by 𝑀𝑀𝑖𝑖𝑖𝑖. 
In this study, wagon flow size is expressed as an interval to take account of real-life instability of and 
fluctuations in railroad freight volumes. Wagon-hour savings for one wagon moved from station i 
through station j without processing is also shown as an (L – R) fuzzy interval with a kernel of most 
feasible values for a given station 𝑡𝑡𝑖𝑖𝑖𝑖 = (𝑡𝑡, 𝑡𝑡, 𝛼𝛼, 𝛽𝛽)𝐿𝐿𝐿𝐿. It is also assumed that 𝑡𝑡𝑖𝑖𝑖𝑖 = 0, i.e. 𝑡𝑡𝑖𝑖𝑖𝑖 is a real 
number belonging to R. Then 𝑡𝑡𝑖𝑖𝑖𝑖 = (0, 0, 0, 0)𝐿𝐿𝐿𝐿, ∀𝐿𝐿, 𝑅𝑅. 
Wagon-hour accumulation (𝑐𝑐𝑚𝑚)𝑖𝑖𝑖𝑖 related to assembling, on station i, a train serving one origin-
destination (OD) pair and travelling towards station j is also given by an (L – R) fuzzy interval. It is 
known that (𝑐𝑐𝑚𝑚)𝑖𝑖𝑖𝑖 = (𝑐𝑐𝑚𝑚)𝑖𝑖𝑝𝑝, where (𝑖𝑖, 𝑝𝑝) – first arc of route 𝑀𝑀𝑖𝑖𝑖𝑖.  
Savings 𝑇𝑇𝑖𝑖𝑖𝑖 associated with the movement of one wagon without processing, when the OD pair (𝑖𝑖, 𝑗𝑗) is 
singled out (branched off): 
 𝑇𝑇𝑖𝑖𝑖𝑖 = ∑ 𝑡𝑡𝑖𝑖𝐿𝐿𝐿𝐿∈𝑀𝑀𝑖𝑖𝑖𝑖

𝐿𝐿≠𝑖𝑖
; 

here, the sum applies to all stations located on the shortest route 𝑀𝑀𝑖𝑖𝑖𝑖 between stations i and j, and is 
calculated as a sum of fuzzy numbers. 
A sum of two (L–R) fuzzy intervals 𝑀𝑀 = (𝑚𝑚,𝑚𝑚,𝛼𝛼, 𝛽𝛽)𝐿𝐿𝐿𝐿 and 𝑁𝑁 = (𝑛𝑛, 𝑛𝑛, 𝛾𝛾, 𝛿𝛿)𝐿𝐿𝐿𝐿 is of the following form 
[1,3,4,5]: 𝑀𝑀+𝑁𝑁 = (𝑚𝑚 + 𝑛𝑛,𝑚𝑚 + 𝑛𝑛, 𝛼𝛼 + 𝛾𝛾, 𝛽𝛽 + 𝛿𝛿)𝐿𝐿𝐿𝐿. Given this, savings 𝑇𝑇𝑖𝑖𝑖𝑖 associated with the 
movement of one wagon, without processing, when the OD pair (𝑖𝑖, 𝑗𝑗) is branched off, also constitute an 
(L–R) fuzzy interval. Assuming that each wagon  𝑃𝑃𝑖𝑖𝑖𝑖 flow should be processed as fast as possible, we 
obtain total processing wagon-hours ∑ 𝑃𝑃𝑖𝑖𝑖𝑖𝑡𝑡𝑖𝑖𝑖𝑖𝛴𝛴𝑖𝑖,𝑖𝑖 , where 𝑡𝑡𝑖𝑖𝑖𝑖𝛴𝛴  is the length of the shortest route 𝑀𝑀𝑖𝑖𝑖𝑖𝑁𝑁 between 
stations i and j in the graph of processing operations N and is given by 𝑡𝑡𝑖𝑖𝑖𝑖𝛴𝛴 = ∑ 𝑡𝑡𝑖𝑖𝐿𝐿𝐿𝐿∈𝑀𝑀𝑖𝑖𝑖𝑖𝑁𝑁 . Also note that 

the operation of multiplication in sum ∑ 𝑃𝑃𝑖𝑖𝑖𝑖𝑡𝑡𝑖𝑖𝑖𝑖 𝛴𝛴𝑖𝑖,𝑖𝑖  involves fuzzy numbers (𝑃𝑃𝑖𝑖𝑖𝑖 𝑖𝑖 𝑡𝑡𝑖𝑖𝑖𝑖𝛴𝛴 − fuzzy intervals). 
According to [1,3,4,5], multiplication of (L – R) fuzzy intervals 𝑀𝑀 = (𝑚𝑚,𝑚𝑚,𝛼𝛼, 𝛽𝛽)𝐿𝐿𝐿𝐿 and 𝑁𝑁 =
(𝑛𝑛, 𝑛𝑛, 𝛾𝛾, 𝛿𝛿)𝐿𝐿𝐿𝐿takes the following form: 
𝑁𝑁 ∙ 𝑁𝑁 = (𝑚𝑚𝑛𝑛,𝑚𝑚𝑛𝑛,𝑚𝑚𝑛𝑛 − (𝑚𝑚 − 𝛼𝛼)(𝑛𝑛 − 𝛾𝛾), (𝑚𝑚 + 𝛽𝛽)(𝑛𝑛 + 𝛿𝛿) −𝑚𝑚𝑛𝑛)𝐿𝐿𝐿𝐿. 
The objective function 𝐹𝐹(𝑛𝑛𝑖𝑖𝑖𝑖) describing the wagon-hours of accumulation and processing of wagons 
has the following form:  
 𝐹𝐹(𝑛𝑛𝑖𝑖𝑖𝑖) =∑((𝑐𝑐𝑚𝑚)𝑖𝑖𝑖𝑖𝑛𝑛𝑖𝑖𝑖𝑖 + 𝑃𝑃𝑖𝑖𝑖𝑖𝑡𝑡𝑖𝑖𝑖𝑖𝛴𝛴(𝑛𝑛𝑖𝑖𝑖𝑖)) → min

{𝑛𝑛𝑖𝑖𝑖𝑖}
  (1) 

where 
𝑛𝑛𝑖𝑖𝑖𝑖 = {1 if OD pair (𝑖𝑖, 𝑗𝑗) exists0 otherwise  

 is 
the length of the shortest route 

 

An L-function (or an R-function) that satisfies these conditions is called a form function. The 
membership function of a fuzzy interval M can be represented by two functions, L and R, and four 
parameters: (𝑚𝑚,𝑚𝑚) ∈ 𝑅𝑅2 – kernel of fuzzy interval (fig. 1 and 2) and 𝛼𝛼, 𝛽𝛽 ≥ 0 – left and right fuzziness 
coefficients, given by:  

𝜇𝜇𝑝𝑝(𝑢𝑢) =

{
 
 
 
 𝐿𝐿 (

𝑚𝑚 − 𝑢𝑢
𝛼𝛼 )  𝑖𝑖𝑖𝑖 𝑢𝑢 ≤ 𝑚𝑚

1 𝑖𝑖𝑖𝑖 𝑚𝑚 ≤ 𝑢𝑢 ≤ 𝑚𝑚

𝑅𝑅(𝑢𝑢 −𝑚𝑚𝛽𝛽 )  𝑖𝑖𝑖𝑖 𝑢𝑢 ≥ 𝑚𝑚
 

It is convenient to divide wagon flows into two classes depending on their size. A first class consists of 
small flows, including null flows, i.e. 𝑃𝑃𝑖𝑖𝑖𝑖 = 0. A second class encompasses large flows, i.e. 𝑃𝑃𝑖𝑖𝑖𝑖 ≠ 0. 
Thus, a wagon flow 𝑃𝑃𝑖𝑖𝑖𝑖 can be represented as an (L – R) fuzzy interval of the following type: 𝑃𝑃𝑖𝑖𝑖𝑖 =
(𝑚𝑚,𝑚𝑚, 𝛼𝛼, 𝛽𝛽)𝐿𝐿𝐿𝐿. The functions L and R are of the form 𝐿𝐿 (𝑚𝑚−𝑢𝑢𝛼𝛼 ) = 1 − (1 − ℎ) (𝑚𝑚−𝑢𝑢𝛼𝛼 ) if 0 ≤ 𝑢𝑢 ≤ 𝑚𝑚, 

where h is the degree of likelihood that a given wagon flow 𝑁𝑁𝑖𝑖𝑖𝑖 = 0; 0 ≤ ℎ ≤ 1; 𝑅𝑅 (𝑢𝑢−𝑚𝑚𝛽𝛽 ) = 1 − (𝑢𝑢−𝑚𝑚𝛽𝛽 ) 
if 𝑢𝑢 ≥ 𝑚𝑚. Fuzzy first and second-class wagon flows are shown in Figures 1 and 2. 
 
For the first class of wagons it is assumed that ℎ = 0. Let the shortest route between two vertices of 
graph G be denoted by 𝑀𝑀𝑖𝑖𝑖𝑖. 
In this study, wagon flow size is expressed as an interval to take account of real-life instability of and 
fluctuations in railroad freight volumes. Wagon-hour savings for one wagon moved from station i 
through station j without processing is also shown as an (L – R) fuzzy interval with a kernel of most 
feasible values for a given station 𝑡𝑡𝑖𝑖𝑖𝑖 = (𝑡𝑡, 𝑡𝑡, 𝛼𝛼, 𝛽𝛽)𝐿𝐿𝐿𝐿. It is also assumed that 𝑡𝑡𝑖𝑖𝑖𝑖 = 0, i.e. 𝑡𝑡𝑖𝑖𝑖𝑖 is a real 
number belonging to R. Then 𝑡𝑡𝑖𝑖𝑖𝑖 = (0, 0, 0, 0)𝐿𝐿𝐿𝐿, ∀𝐿𝐿, 𝑅𝑅. 
Wagon-hour accumulation (𝑐𝑐𝑚𝑚)𝑖𝑖𝑖𝑖 related to assembling, on station i, a train serving one origin-
destination (OD) pair and travelling towards station j is also given by an (L – R) fuzzy interval. It is 
known that (𝑐𝑐𝑚𝑚)𝑖𝑖𝑖𝑖 = (𝑐𝑐𝑚𝑚)𝑖𝑖𝑝𝑝, where (𝑖𝑖, 𝑝𝑝) – first arc of route 𝑀𝑀𝑖𝑖𝑖𝑖.  
Savings 𝑇𝑇𝑖𝑖𝑖𝑖 associated with the movement of one wagon without processing, when the OD pair (𝑖𝑖, 𝑗𝑗) is 
singled out (branched off): 
 𝑇𝑇𝑖𝑖𝑖𝑖 = ∑ 𝑡𝑡𝑖𝑖𝐿𝐿𝐿𝐿∈𝑀𝑀𝑖𝑖𝑖𝑖

𝐿𝐿≠𝑖𝑖
; 

here, the sum applies to all stations located on the shortest route 𝑀𝑀𝑖𝑖𝑖𝑖 between stations i and j, and is 
calculated as a sum of fuzzy numbers. 
A sum of two (L–R) fuzzy intervals 𝑀𝑀 = (𝑚𝑚,𝑚𝑚,𝛼𝛼, 𝛽𝛽)𝐿𝐿𝐿𝐿 and 𝑁𝑁 = (𝑛𝑛, 𝑛𝑛, 𝛾𝛾, 𝛿𝛿)𝐿𝐿𝐿𝐿 is of the following form 
[1,3,4,5]: 𝑀𝑀+𝑁𝑁 = (𝑚𝑚 + 𝑛𝑛,𝑚𝑚 + 𝑛𝑛, 𝛼𝛼 + 𝛾𝛾, 𝛽𝛽 + 𝛿𝛿)𝐿𝐿𝐿𝐿. Given this, savings 𝑇𝑇𝑖𝑖𝑖𝑖 associated with the 
movement of one wagon, without processing, when the OD pair (𝑖𝑖, 𝑗𝑗) is branched off, also constitute an 
(L–R) fuzzy interval. Assuming that each wagon  𝑃𝑃𝑖𝑖𝑖𝑖 flow should be processed as fast as possible, we 
obtain total processing wagon-hours ∑ 𝑃𝑃𝑖𝑖𝑖𝑖𝑡𝑡𝑖𝑖𝑖𝑖𝛴𝛴𝑖𝑖,𝑖𝑖 , where 𝑡𝑡𝑖𝑖𝑖𝑖𝛴𝛴  is the length of the shortest route 𝑀𝑀𝑖𝑖𝑖𝑖𝑁𝑁 between 
stations i and j in the graph of processing operations N and is given by 𝑡𝑡𝑖𝑖𝑖𝑖𝛴𝛴 = ∑ 𝑡𝑡𝑖𝑖𝐿𝐿𝐿𝐿∈𝑀𝑀𝑖𝑖𝑖𝑖𝑁𝑁 . Also note that 

the operation of multiplication in sum ∑ 𝑃𝑃𝑖𝑖𝑖𝑖𝑡𝑡𝑖𝑖𝑖𝑖 𝛴𝛴𝑖𝑖,𝑖𝑖  involves fuzzy numbers (𝑃𝑃𝑖𝑖𝑖𝑖 𝑖𝑖 𝑡𝑡𝑖𝑖𝑖𝑖𝛴𝛴 − fuzzy intervals). 
According to [1,3,4,5], multiplication of (L – R) fuzzy intervals 𝑀𝑀 = (𝑚𝑚,𝑚𝑚,𝛼𝛼, 𝛽𝛽)𝐿𝐿𝐿𝐿 and 𝑁𝑁 =
(𝑛𝑛, 𝑛𝑛, 𝛾𝛾, 𝛿𝛿)𝐿𝐿𝐿𝐿takes the following form: 
𝑁𝑁 ∙ 𝑁𝑁 = (𝑚𝑚𝑛𝑛,𝑚𝑚𝑛𝑛,𝑚𝑚𝑛𝑛 − (𝑚𝑚 − 𝛼𝛼)(𝑛𝑛 − 𝛾𝛾), (𝑚𝑚 + 𝛽𝛽)(𝑛𝑛 + 𝛿𝛿) −𝑚𝑚𝑛𝑛)𝐿𝐿𝐿𝐿. 
The objective function 𝐹𝐹(𝑛𝑛𝑖𝑖𝑖𝑖) describing the wagon-hours of accumulation and processing of wagons 
has the following form:  
 𝐹𝐹(𝑛𝑛𝑖𝑖𝑖𝑖) =∑((𝑐𝑐𝑚𝑚)𝑖𝑖𝑖𝑖𝑛𝑛𝑖𝑖𝑖𝑖 + 𝑃𝑃𝑖𝑖𝑖𝑖𝑡𝑡𝑖𝑖𝑖𝑖𝛴𝛴(𝑛𝑛𝑖𝑖𝑖𝑖)) → min

{𝑛𝑛𝑖𝑖𝑖𝑖}
  (1) 

where 
𝑛𝑛𝑖𝑖𝑖𝑖 = {1 if OD pair (𝑖𝑖, 𝑗𝑗) exists0 otherwise  

 between sta-
tions i and j in the graph of processing operations 
N and is given by 

 

An L-function (or an R-function) that satisfies these conditions is called a form function. The 
membership function of a fuzzy interval M can be represented by two functions, L and R, and four 
parameters: (𝑚𝑚,𝑚𝑚) ∈ 𝑅𝑅2 – kernel of fuzzy interval (fig. 1 and 2) and 𝛼𝛼, 𝛽𝛽 ≥ 0 – left and right fuzziness 
coefficients, given by:  

𝜇𝜇𝑝𝑝(𝑢𝑢) =

{
 
 
 
 𝐿𝐿 (

𝑚𝑚 − 𝑢𝑢
𝛼𝛼 )  𝑖𝑖𝑖𝑖 𝑢𝑢 ≤ 𝑚𝑚

1 𝑖𝑖𝑖𝑖 𝑚𝑚 ≤ 𝑢𝑢 ≤ 𝑚𝑚

𝑅𝑅(𝑢𝑢 −𝑚𝑚𝛽𝛽 )  𝑖𝑖𝑖𝑖 𝑢𝑢 ≥ 𝑚𝑚
 

It is convenient to divide wagon flows into two classes depending on their size. A first class consists of 
small flows, including null flows, i.e. 𝑃𝑃𝑖𝑖𝑖𝑖 = 0. A second class encompasses large flows, i.e. 𝑃𝑃𝑖𝑖𝑖𝑖 ≠ 0. 
Thus, a wagon flow 𝑃𝑃𝑖𝑖𝑖𝑖 can be represented as an (L – R) fuzzy interval of the following type: 𝑃𝑃𝑖𝑖𝑖𝑖 =
(𝑚𝑚,𝑚𝑚, 𝛼𝛼, 𝛽𝛽)𝐿𝐿𝐿𝐿. The functions L and R are of the form 𝐿𝐿 (𝑚𝑚−𝑢𝑢𝛼𝛼 ) = 1 − (1 − ℎ) (𝑚𝑚−𝑢𝑢𝛼𝛼 ) if 0 ≤ 𝑢𝑢 ≤ 𝑚𝑚, 

where h is the degree of likelihood that a given wagon flow 𝑁𝑁𝑖𝑖𝑖𝑖 = 0; 0 ≤ ℎ ≤ 1; 𝑅𝑅 (𝑢𝑢−𝑚𝑚𝛽𝛽 ) = 1 − (𝑢𝑢−𝑚𝑚𝛽𝛽 ) 
if 𝑢𝑢 ≥ 𝑚𝑚. Fuzzy first and second-class wagon flows are shown in Figures 1 and 2. 
 
For the first class of wagons it is assumed that ℎ = 0. Let the shortest route between two vertices of 
graph G be denoted by 𝑀𝑀𝑖𝑖𝑖𝑖. 
In this study, wagon flow size is expressed as an interval to take account of real-life instability of and 
fluctuations in railroad freight volumes. Wagon-hour savings for one wagon moved from station i 
through station j without processing is also shown as an (L – R) fuzzy interval with a kernel of most 
feasible values for a given station 𝑡𝑡𝑖𝑖𝑖𝑖 = (𝑡𝑡, 𝑡𝑡, 𝛼𝛼, 𝛽𝛽)𝐿𝐿𝐿𝐿. It is also assumed that 𝑡𝑡𝑖𝑖𝑖𝑖 = 0, i.e. 𝑡𝑡𝑖𝑖𝑖𝑖 is a real 
number belonging to R. Then 𝑡𝑡𝑖𝑖𝑖𝑖 = (0, 0, 0, 0)𝐿𝐿𝐿𝐿, ∀𝐿𝐿, 𝑅𝑅. 
Wagon-hour accumulation (𝑐𝑐𝑚𝑚)𝑖𝑖𝑖𝑖 related to assembling, on station i, a train serving one origin-
destination (OD) pair and travelling towards station j is also given by an (L – R) fuzzy interval. It is 
known that (𝑐𝑐𝑚𝑚)𝑖𝑖𝑖𝑖 = (𝑐𝑐𝑚𝑚)𝑖𝑖𝑝𝑝, where (𝑖𝑖, 𝑝𝑝) – first arc of route 𝑀𝑀𝑖𝑖𝑖𝑖.  
Savings 𝑇𝑇𝑖𝑖𝑖𝑖 associated with the movement of one wagon without processing, when the OD pair (𝑖𝑖, 𝑗𝑗) is 
singled out (branched off): 
 𝑇𝑇𝑖𝑖𝑖𝑖 = ∑ 𝑡𝑡𝑖𝑖𝐿𝐿𝐿𝐿∈𝑀𝑀𝑖𝑖𝑖𝑖

𝐿𝐿≠𝑖𝑖
; 

here, the sum applies to all stations located on the shortest route 𝑀𝑀𝑖𝑖𝑖𝑖 between stations i and j, and is 
calculated as a sum of fuzzy numbers. 
A sum of two (L–R) fuzzy intervals 𝑀𝑀 = (𝑚𝑚,𝑚𝑚,𝛼𝛼, 𝛽𝛽)𝐿𝐿𝐿𝐿 and 𝑁𝑁 = (𝑛𝑛, 𝑛𝑛, 𝛾𝛾, 𝛿𝛿)𝐿𝐿𝐿𝐿 is of the following form 
[1,3,4,5]: 𝑀𝑀+𝑁𝑁 = (𝑚𝑚 + 𝑛𝑛,𝑚𝑚 + 𝑛𝑛, 𝛼𝛼 + 𝛾𝛾, 𝛽𝛽 + 𝛿𝛿)𝐿𝐿𝐿𝐿. Given this, savings 𝑇𝑇𝑖𝑖𝑖𝑖 associated with the 
movement of one wagon, without processing, when the OD pair (𝑖𝑖, 𝑗𝑗) is branched off, also constitute an 
(L–R) fuzzy interval. Assuming that each wagon  𝑃𝑃𝑖𝑖𝑖𝑖 flow should be processed as fast as possible, we 
obtain total processing wagon-hours ∑ 𝑃𝑃𝑖𝑖𝑖𝑖𝑡𝑡𝑖𝑖𝑖𝑖𝛴𝛴𝑖𝑖,𝑖𝑖 , where 𝑡𝑡𝑖𝑖𝑖𝑖𝛴𝛴  is the length of the shortest route 𝑀𝑀𝑖𝑖𝑖𝑖𝑁𝑁 between 
stations i and j in the graph of processing operations N and is given by 𝑡𝑡𝑖𝑖𝑖𝑖𝛴𝛴 = ∑ 𝑡𝑡𝑖𝑖𝐿𝐿𝐿𝐿∈𝑀𝑀𝑖𝑖𝑖𝑖𝑁𝑁 . Also note that 

the operation of multiplication in sum ∑ 𝑃𝑃𝑖𝑖𝑖𝑖𝑡𝑡𝑖𝑖𝑖𝑖 𝛴𝛴𝑖𝑖,𝑖𝑖  involves fuzzy numbers (𝑃𝑃𝑖𝑖𝑖𝑖 𝑖𝑖 𝑡𝑡𝑖𝑖𝑖𝑖𝛴𝛴 − fuzzy intervals). 
According to [1,3,4,5], multiplication of (L – R) fuzzy intervals 𝑀𝑀 = (𝑚𝑚,𝑚𝑚,𝛼𝛼, 𝛽𝛽)𝐿𝐿𝐿𝐿 and 𝑁𝑁 =
(𝑛𝑛, 𝑛𝑛, 𝛾𝛾, 𝛿𝛿)𝐿𝐿𝐿𝐿takes the following form: 
𝑁𝑁 ∙ 𝑁𝑁 = (𝑚𝑚𝑛𝑛,𝑚𝑚𝑛𝑛,𝑚𝑚𝑛𝑛 − (𝑚𝑚 − 𝛼𝛼)(𝑛𝑛 − 𝛾𝛾), (𝑚𝑚 + 𝛽𝛽)(𝑛𝑛 + 𝛿𝛿) −𝑚𝑚𝑛𝑛)𝐿𝐿𝐿𝐿. 
The objective function 𝐹𝐹(𝑛𝑛𝑖𝑖𝑖𝑖) describing the wagon-hours of accumulation and processing of wagons 
has the following form:  
 𝐹𝐹(𝑛𝑛𝑖𝑖𝑖𝑖) =∑((𝑐𝑐𝑚𝑚)𝑖𝑖𝑖𝑖𝑛𝑛𝑖𝑖𝑖𝑖 + 𝑃𝑃𝑖𝑖𝑖𝑖𝑡𝑡𝑖𝑖𝑖𝑖𝛴𝛴(𝑛𝑛𝑖𝑖𝑖𝑖)) → min

{𝑛𝑛𝑖𝑖𝑖𝑖}
  (1) 

where 
𝑛𝑛𝑖𝑖𝑖𝑖 = {1 if OD pair (𝑖𝑖, 𝑗𝑗) exists0 otherwise  

. Also note that 
the operation of multiplication in sum 

 

An L-function (or an R-function) that satisfies these conditions is called a form function. The 
membership function of a fuzzy interval M can be represented by two functions, L and R, and four 
parameters: (𝑚𝑚,𝑚𝑚) ∈ 𝑅𝑅2 – kernel of fuzzy interval (fig. 1 and 2) and 𝛼𝛼, 𝛽𝛽 ≥ 0 – left and right fuzziness 
coefficients, given by:  

𝜇𝜇𝑝𝑝(𝑢𝑢) =

{
 
 
 
 𝐿𝐿 (

𝑚𝑚 − 𝑢𝑢
𝛼𝛼 )  𝑖𝑖𝑖𝑖 𝑢𝑢 ≤ 𝑚𝑚

1 𝑖𝑖𝑖𝑖 𝑚𝑚 ≤ 𝑢𝑢 ≤ 𝑚𝑚

𝑅𝑅(𝑢𝑢 −𝑚𝑚𝛽𝛽 )  𝑖𝑖𝑖𝑖 𝑢𝑢 ≥ 𝑚𝑚
 

It is convenient to divide wagon flows into two classes depending on their size. A first class consists of 
small flows, including null flows, i.e. 𝑃𝑃𝑖𝑖𝑖𝑖 = 0. A second class encompasses large flows, i.e. 𝑃𝑃𝑖𝑖𝑖𝑖 ≠ 0. 
Thus, a wagon flow 𝑃𝑃𝑖𝑖𝑖𝑖 can be represented as an (L – R) fuzzy interval of the following type: 𝑃𝑃𝑖𝑖𝑖𝑖 =
(𝑚𝑚,𝑚𝑚, 𝛼𝛼, 𝛽𝛽)𝐿𝐿𝐿𝐿. The functions L and R are of the form 𝐿𝐿 (𝑚𝑚−𝑢𝑢𝛼𝛼 ) = 1 − (1 − ℎ) (𝑚𝑚−𝑢𝑢𝛼𝛼 ) if 0 ≤ 𝑢𝑢 ≤ 𝑚𝑚, 

where h is the degree of likelihood that a given wagon flow 𝑁𝑁𝑖𝑖𝑖𝑖 = 0; 0 ≤ ℎ ≤ 1; 𝑅𝑅 (𝑢𝑢−𝑚𝑚𝛽𝛽 ) = 1 − (𝑢𝑢−𝑚𝑚𝛽𝛽 ) 
if 𝑢𝑢 ≥ 𝑚𝑚. Fuzzy first and second-class wagon flows are shown in Figures 1 and 2. 
 
For the first class of wagons it is assumed that ℎ = 0. Let the shortest route between two vertices of 
graph G be denoted by 𝑀𝑀𝑖𝑖𝑖𝑖. 
In this study, wagon flow size is expressed as an interval to take account of real-life instability of and 
fluctuations in railroad freight volumes. Wagon-hour savings for one wagon moved from station i 
through station j without processing is also shown as an (L – R) fuzzy interval with a kernel of most 
feasible values for a given station 𝑡𝑡𝑖𝑖𝑖𝑖 = (𝑡𝑡, 𝑡𝑡, 𝛼𝛼, 𝛽𝛽)𝐿𝐿𝐿𝐿. It is also assumed that 𝑡𝑡𝑖𝑖𝑖𝑖 = 0, i.e. 𝑡𝑡𝑖𝑖𝑖𝑖 is a real 
number belonging to R. Then 𝑡𝑡𝑖𝑖𝑖𝑖 = (0, 0, 0, 0)𝐿𝐿𝐿𝐿, ∀𝐿𝐿, 𝑅𝑅. 
Wagon-hour accumulation (𝑐𝑐𝑚𝑚)𝑖𝑖𝑖𝑖 related to assembling, on station i, a train serving one origin-
destination (OD) pair and travelling towards station j is also given by an (L – R) fuzzy interval. It is 
known that (𝑐𝑐𝑚𝑚)𝑖𝑖𝑖𝑖 = (𝑐𝑐𝑚𝑚)𝑖𝑖𝑝𝑝, where (𝑖𝑖, 𝑝𝑝) – first arc of route 𝑀𝑀𝑖𝑖𝑖𝑖.  
Savings 𝑇𝑇𝑖𝑖𝑖𝑖 associated with the movement of one wagon without processing, when the OD pair (𝑖𝑖, 𝑗𝑗) is 
singled out (branched off): 
 𝑇𝑇𝑖𝑖𝑖𝑖 = ∑ 𝑡𝑡𝑖𝑖𝐿𝐿𝐿𝐿∈𝑀𝑀𝑖𝑖𝑖𝑖

𝐿𝐿≠𝑖𝑖
; 

here, the sum applies to all stations located on the shortest route 𝑀𝑀𝑖𝑖𝑖𝑖 between stations i and j, and is 
calculated as a sum of fuzzy numbers. 
A sum of two (L–R) fuzzy intervals 𝑀𝑀 = (𝑚𝑚,𝑚𝑚,𝛼𝛼, 𝛽𝛽)𝐿𝐿𝐿𝐿 and 𝑁𝑁 = (𝑛𝑛, 𝑛𝑛, 𝛾𝛾, 𝛿𝛿)𝐿𝐿𝐿𝐿 is of the following form 
[1,3,4,5]: 𝑀𝑀+𝑁𝑁 = (𝑚𝑚 + 𝑛𝑛,𝑚𝑚 + 𝑛𝑛, 𝛼𝛼 + 𝛾𝛾, 𝛽𝛽 + 𝛿𝛿)𝐿𝐿𝐿𝐿. Given this, savings 𝑇𝑇𝑖𝑖𝑖𝑖 associated with the 
movement of one wagon, without processing, when the OD pair (𝑖𝑖, 𝑗𝑗) is branched off, also constitute an 
(L–R) fuzzy interval. Assuming that each wagon  𝑃𝑃𝑖𝑖𝑖𝑖 flow should be processed as fast as possible, we 
obtain total processing wagon-hours ∑ 𝑃𝑃𝑖𝑖𝑖𝑖𝑡𝑡𝑖𝑖𝑖𝑖𝛴𝛴𝑖𝑖,𝑖𝑖 , where 𝑡𝑡𝑖𝑖𝑖𝑖𝛴𝛴  is the length of the shortest route 𝑀𝑀𝑖𝑖𝑖𝑖𝑁𝑁 between 
stations i and j in the graph of processing operations N and is given by 𝑡𝑡𝑖𝑖𝑖𝑖𝛴𝛴 = ∑ 𝑡𝑡𝑖𝑖𝐿𝐿𝐿𝐿∈𝑀𝑀𝑖𝑖𝑖𝑖𝑁𝑁 . Also note that 

the operation of multiplication in sum ∑ 𝑃𝑃𝑖𝑖𝑖𝑖𝑡𝑡𝑖𝑖𝑖𝑖 𝛴𝛴𝑖𝑖,𝑖𝑖  involves fuzzy numbers (𝑃𝑃𝑖𝑖𝑖𝑖 𝑖𝑖 𝑡𝑡𝑖𝑖𝑖𝑖𝛴𝛴 − fuzzy intervals). 
According to [1,3,4,5], multiplication of (L – R) fuzzy intervals 𝑀𝑀 = (𝑚𝑚,𝑚𝑚,𝛼𝛼, 𝛽𝛽)𝐿𝐿𝐿𝐿 and 𝑁𝑁 =
(𝑛𝑛, 𝑛𝑛, 𝛾𝛾, 𝛿𝛿)𝐿𝐿𝐿𝐿takes the following form: 
𝑁𝑁 ∙ 𝑁𝑁 = (𝑚𝑚𝑛𝑛,𝑚𝑚𝑛𝑛,𝑚𝑚𝑛𝑛 − (𝑚𝑚 − 𝛼𝛼)(𝑛𝑛 − 𝛾𝛾), (𝑚𝑚 + 𝛽𝛽)(𝑛𝑛 + 𝛿𝛿) −𝑚𝑚𝑛𝑛)𝐿𝐿𝐿𝐿. 
The objective function 𝐹𝐹(𝑛𝑛𝑖𝑖𝑖𝑖) describing the wagon-hours of accumulation and processing of wagons 
has the following form:  
 𝐹𝐹(𝑛𝑛𝑖𝑖𝑖𝑖) =∑((𝑐𝑐𝑚𝑚)𝑖𝑖𝑖𝑖𝑛𝑛𝑖𝑖𝑖𝑖 + 𝑃𝑃𝑖𝑖𝑖𝑖𝑡𝑡𝑖𝑖𝑖𝑖𝛴𝛴(𝑛𝑛𝑖𝑖𝑖𝑖)) → min

{𝑛𝑛𝑖𝑖𝑖𝑖}
  (1) 

where 
𝑛𝑛𝑖𝑖𝑖𝑖 = {1 if OD pair (𝑖𝑖, 𝑗𝑗) exists0 otherwise  

involves fuzzy numbers (Pij and 

 

An L-function (or an R-function) that satisfies these conditions is called a form function. The 
membership function of a fuzzy interval M can be represented by two functions, L and R, and four 
parameters: (𝑚𝑚,𝑚𝑚) ∈ 𝑅𝑅2 – kernel of fuzzy interval (fig. 1 and 2) and 𝛼𝛼, 𝛽𝛽 ≥ 0 – left and right fuzziness 
coefficients, given by:  

𝜇𝜇𝑝𝑝(𝑢𝑢) =

{
 
 
 
 𝐿𝐿 (

𝑚𝑚 − 𝑢𝑢
𝛼𝛼 )  𝑖𝑖𝑖𝑖 𝑢𝑢 ≤ 𝑚𝑚

1 𝑖𝑖𝑖𝑖 𝑚𝑚 ≤ 𝑢𝑢 ≤ 𝑚𝑚

𝑅𝑅(𝑢𝑢 −𝑚𝑚𝛽𝛽 )  𝑖𝑖𝑖𝑖 𝑢𝑢 ≥ 𝑚𝑚
 

It is convenient to divide wagon flows into two classes depending on their size. A first class consists of 
small flows, including null flows, i.e. 𝑃𝑃𝑖𝑖𝑖𝑖 = 0. A second class encompasses large flows, i.e. 𝑃𝑃𝑖𝑖𝑖𝑖 ≠ 0. 
Thus, a wagon flow 𝑃𝑃𝑖𝑖𝑖𝑖 can be represented as an (L – R) fuzzy interval of the following type: 𝑃𝑃𝑖𝑖𝑖𝑖 =
(𝑚𝑚,𝑚𝑚, 𝛼𝛼, 𝛽𝛽)𝐿𝐿𝐿𝐿. The functions L and R are of the form 𝐿𝐿 (𝑚𝑚−𝑢𝑢𝛼𝛼 ) = 1 − (1 − ℎ) (𝑚𝑚−𝑢𝑢𝛼𝛼 ) if 0 ≤ 𝑢𝑢 ≤ 𝑚𝑚, 

where h is the degree of likelihood that a given wagon flow 𝑁𝑁𝑖𝑖𝑖𝑖 = 0; 0 ≤ ℎ ≤ 1; 𝑅𝑅 (𝑢𝑢−𝑚𝑚𝛽𝛽 ) = 1 − (𝑢𝑢−𝑚𝑚𝛽𝛽 ) 
if 𝑢𝑢 ≥ 𝑚𝑚. Fuzzy first and second-class wagon flows are shown in Figures 1 and 2. 
 
For the first class of wagons it is assumed that ℎ = 0. Let the shortest route between two vertices of 
graph G be denoted by 𝑀𝑀𝑖𝑖𝑖𝑖. 
In this study, wagon flow size is expressed as an interval to take account of real-life instability of and 
fluctuations in railroad freight volumes. Wagon-hour savings for one wagon moved from station i 
through station j without processing is also shown as an (L – R) fuzzy interval with a kernel of most 
feasible values for a given station 𝑡𝑡𝑖𝑖𝑖𝑖 = (𝑡𝑡, 𝑡𝑡, 𝛼𝛼, 𝛽𝛽)𝐿𝐿𝐿𝐿. It is also assumed that 𝑡𝑡𝑖𝑖𝑖𝑖 = 0, i.e. 𝑡𝑡𝑖𝑖𝑖𝑖 is a real 
number belonging to R. Then 𝑡𝑡𝑖𝑖𝑖𝑖 = (0, 0, 0, 0)𝐿𝐿𝐿𝐿, ∀𝐿𝐿, 𝑅𝑅. 
Wagon-hour accumulation (𝑐𝑐𝑚𝑚)𝑖𝑖𝑖𝑖 related to assembling, on station i, a train serving one origin-
destination (OD) pair and travelling towards station j is also given by an (L – R) fuzzy interval. It is 
known that (𝑐𝑐𝑚𝑚)𝑖𝑖𝑖𝑖 = (𝑐𝑐𝑚𝑚)𝑖𝑖𝑝𝑝, where (𝑖𝑖, 𝑝𝑝) – first arc of route 𝑀𝑀𝑖𝑖𝑖𝑖.  
Savings 𝑇𝑇𝑖𝑖𝑖𝑖 associated with the movement of one wagon without processing, when the OD pair (𝑖𝑖, 𝑗𝑗) is 
singled out (branched off): 
 𝑇𝑇𝑖𝑖𝑖𝑖 = ∑ 𝑡𝑡𝑖𝑖𝐿𝐿𝐿𝐿∈𝑀𝑀𝑖𝑖𝑖𝑖

𝐿𝐿≠𝑖𝑖
; 

here, the sum applies to all stations located on the shortest route 𝑀𝑀𝑖𝑖𝑖𝑖 between stations i and j, and is 
calculated as a sum of fuzzy numbers. 
A sum of two (L–R) fuzzy intervals 𝑀𝑀 = (𝑚𝑚,𝑚𝑚,𝛼𝛼, 𝛽𝛽)𝐿𝐿𝐿𝐿 and 𝑁𝑁 = (𝑛𝑛, 𝑛𝑛, 𝛾𝛾, 𝛿𝛿)𝐿𝐿𝐿𝐿 is of the following form 
[1,3,4,5]: 𝑀𝑀+𝑁𝑁 = (𝑚𝑚 + 𝑛𝑛,𝑚𝑚 + 𝑛𝑛, 𝛼𝛼 + 𝛾𝛾, 𝛽𝛽 + 𝛿𝛿)𝐿𝐿𝐿𝐿. Given this, savings 𝑇𝑇𝑖𝑖𝑖𝑖 associated with the 
movement of one wagon, without processing, when the OD pair (𝑖𝑖, 𝑗𝑗) is branched off, also constitute an 
(L–R) fuzzy interval. Assuming that each wagon  𝑃𝑃𝑖𝑖𝑖𝑖 flow should be processed as fast as possible, we 
obtain total processing wagon-hours ∑ 𝑃𝑃𝑖𝑖𝑖𝑖𝑡𝑡𝑖𝑖𝑖𝑖𝛴𝛴𝑖𝑖,𝑖𝑖 , where 𝑡𝑡𝑖𝑖𝑖𝑖𝛴𝛴  is the length of the shortest route 𝑀𝑀𝑖𝑖𝑖𝑖𝑁𝑁 between 
stations i and j in the graph of processing operations N and is given by 𝑡𝑡𝑖𝑖𝑖𝑖𝛴𝛴 = ∑ 𝑡𝑡𝑖𝑖𝐿𝐿𝐿𝐿∈𝑀𝑀𝑖𝑖𝑖𝑖𝑁𝑁 . Also note that 

the operation of multiplication in sum ∑ 𝑃𝑃𝑖𝑖𝑖𝑖𝑡𝑡𝑖𝑖𝑖𝑖 𝛴𝛴𝑖𝑖,𝑖𝑖  involves fuzzy numbers (𝑃𝑃𝑖𝑖𝑖𝑖 𝑖𝑖 𝑡𝑡𝑖𝑖𝑖𝑖𝛴𝛴 − fuzzy intervals). 
According to [1,3,4,5], multiplication of (L – R) fuzzy intervals 𝑀𝑀 = (𝑚𝑚,𝑚𝑚,𝛼𝛼, 𝛽𝛽)𝐿𝐿𝐿𝐿 and 𝑁𝑁 =
(𝑛𝑛, 𝑛𝑛, 𝛾𝛾, 𝛿𝛿)𝐿𝐿𝐿𝐿takes the following form: 
𝑁𝑁 ∙ 𝑁𝑁 = (𝑚𝑚𝑛𝑛,𝑚𝑚𝑛𝑛,𝑚𝑚𝑛𝑛 − (𝑚𝑚 − 𝛼𝛼)(𝑛𝑛 − 𝛾𝛾), (𝑚𝑚 + 𝛽𝛽)(𝑛𝑛 + 𝛿𝛿) −𝑚𝑚𝑛𝑛)𝐿𝐿𝐿𝐿. 
The objective function 𝐹𝐹(𝑛𝑛𝑖𝑖𝑖𝑖) describing the wagon-hours of accumulation and processing of wagons 
has the following form:  
 𝐹𝐹(𝑛𝑛𝑖𝑖𝑖𝑖) =∑((𝑐𝑐𝑚𝑚)𝑖𝑖𝑖𝑖𝑛𝑛𝑖𝑖𝑖𝑖 + 𝑃𝑃𝑖𝑖𝑖𝑖𝑡𝑡𝑖𝑖𝑖𝑖𝛴𝛴(𝑛𝑛𝑖𝑖𝑖𝑖)) → min

{𝑛𝑛𝑖𝑖𝑖𝑖}
  (1) 

where 
𝑛𝑛𝑖𝑖𝑖𝑖 = {1 if OD pair (𝑖𝑖, 𝑗𝑗) exists0 otherwise  

 – fuzzy inter-
vals). According to [1, 3, 4, 5], multiplication of 

Figure 1. A fuzzy wagon flow that can take a zero value

Figure 2. A fuzzy wagon flow that does not take a zero value
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(L – R) fuzzy intervals 

 

An L-function (or an R-function) that satisfies these conditions is called a form function. The 
membership function of a fuzzy interval M can be represented by two functions, L and R, and four 
parameters: (𝑚𝑚,𝑚𝑚) ∈ 𝑅𝑅2 – kernel of fuzzy interval (fig. 1 and 2) and 𝛼𝛼, 𝛽𝛽 ≥ 0 – left and right fuzziness 
coefficients, given by:  

𝜇𝜇𝑝𝑝(𝑢𝑢) =

{
 
 
 
 𝐿𝐿 (

𝑚𝑚 − 𝑢𝑢
𝛼𝛼 )  𝑖𝑖𝑖𝑖 𝑢𝑢 ≤ 𝑚𝑚

1 𝑖𝑖𝑖𝑖 𝑚𝑚 ≤ 𝑢𝑢 ≤ 𝑚𝑚

𝑅𝑅(𝑢𝑢 −𝑚𝑚𝛽𝛽 )  𝑖𝑖𝑖𝑖 𝑢𝑢 ≥ 𝑚𝑚
 

It is convenient to divide wagon flows into two classes depending on their size. A first class consists of 
small flows, including null flows, i.e. 𝑃𝑃𝑖𝑖𝑖𝑖 = 0. A second class encompasses large flows, i.e. 𝑃𝑃𝑖𝑖𝑖𝑖 ≠ 0. 
Thus, a wagon flow 𝑃𝑃𝑖𝑖𝑖𝑖 can be represented as an (L – R) fuzzy interval of the following type: 𝑃𝑃𝑖𝑖𝑖𝑖 =
(𝑚𝑚,𝑚𝑚, 𝛼𝛼, 𝛽𝛽)𝐿𝐿𝐿𝐿. The functions L and R are of the form 𝐿𝐿 (𝑚𝑚−𝑢𝑢𝛼𝛼 ) = 1 − (1 − ℎ) (𝑚𝑚−𝑢𝑢𝛼𝛼 ) if 0 ≤ 𝑢𝑢 ≤ 𝑚𝑚, 

where h is the degree of likelihood that a given wagon flow 𝑁𝑁𝑖𝑖𝑖𝑖 = 0; 0 ≤ ℎ ≤ 1; 𝑅𝑅 (𝑢𝑢−𝑚𝑚𝛽𝛽 ) = 1 − (𝑢𝑢−𝑚𝑚𝛽𝛽 ) 
if 𝑢𝑢 ≥ 𝑚𝑚. Fuzzy first and second-class wagon flows are shown in Figures 1 and 2. 
 
For the first class of wagons it is assumed that ℎ = 0. Let the shortest route between two vertices of 
graph G be denoted by 𝑀𝑀𝑖𝑖𝑖𝑖. 
In this study, wagon flow size is expressed as an interval to take account of real-life instability of and 
fluctuations in railroad freight volumes. Wagon-hour savings for one wagon moved from station i 
through station j without processing is also shown as an (L – R) fuzzy interval with a kernel of most 
feasible values for a given station 𝑡𝑡𝑖𝑖𝑖𝑖 = (𝑡𝑡, 𝑡𝑡, 𝛼𝛼, 𝛽𝛽)𝐿𝐿𝐿𝐿. It is also assumed that 𝑡𝑡𝑖𝑖𝑖𝑖 = 0, i.e. 𝑡𝑡𝑖𝑖𝑖𝑖 is a real 
number belonging to R. Then 𝑡𝑡𝑖𝑖𝑖𝑖 = (0, 0, 0, 0)𝐿𝐿𝐿𝐿, ∀𝐿𝐿, 𝑅𝑅. 
Wagon-hour accumulation (𝑐𝑐𝑚𝑚)𝑖𝑖𝑖𝑖 related to assembling, on station i, a train serving one origin-
destination (OD) pair and travelling towards station j is also given by an (L – R) fuzzy interval. It is 
known that (𝑐𝑐𝑚𝑚)𝑖𝑖𝑖𝑖 = (𝑐𝑐𝑚𝑚)𝑖𝑖𝑝𝑝, where (𝑖𝑖, 𝑝𝑝) – first arc of route 𝑀𝑀𝑖𝑖𝑖𝑖.  
Savings 𝑇𝑇𝑖𝑖𝑖𝑖 associated with the movement of one wagon without processing, when the OD pair (𝑖𝑖, 𝑗𝑗) is 
singled out (branched off): 
 𝑇𝑇𝑖𝑖𝑖𝑖 = ∑ 𝑡𝑡𝑖𝑖𝐿𝐿𝐿𝐿∈𝑀𝑀𝑖𝑖𝑖𝑖

𝐿𝐿≠𝑖𝑖
; 

here, the sum applies to all stations located on the shortest route 𝑀𝑀𝑖𝑖𝑖𝑖 between stations i and j, and is 
calculated as a sum of fuzzy numbers. 
A sum of two (L–R) fuzzy intervals 𝑀𝑀 = (𝑚𝑚,𝑚𝑚,𝛼𝛼, 𝛽𝛽)𝐿𝐿𝐿𝐿 and 𝑁𝑁 = (𝑛𝑛, 𝑛𝑛, 𝛾𝛾, 𝛿𝛿)𝐿𝐿𝐿𝐿 is of the following form 
[1,3,4,5]: 𝑀𝑀+𝑁𝑁 = (𝑚𝑚 + 𝑛𝑛,𝑚𝑚 + 𝑛𝑛, 𝛼𝛼 + 𝛾𝛾, 𝛽𝛽 + 𝛿𝛿)𝐿𝐿𝐿𝐿. Given this, savings 𝑇𝑇𝑖𝑖𝑖𝑖 associated with the 
movement of one wagon, without processing, when the OD pair (𝑖𝑖, 𝑗𝑗) is branched off, also constitute an 
(L–R) fuzzy interval. Assuming that each wagon  𝑃𝑃𝑖𝑖𝑖𝑖 flow should be processed as fast as possible, we 
obtain total processing wagon-hours ∑ 𝑃𝑃𝑖𝑖𝑖𝑖𝑡𝑡𝑖𝑖𝑖𝑖𝛴𝛴𝑖𝑖,𝑖𝑖 , where 𝑡𝑡𝑖𝑖𝑖𝑖𝛴𝛴  is the length of the shortest route 𝑀𝑀𝑖𝑖𝑖𝑖𝑁𝑁 between 
stations i and j in the graph of processing operations N and is given by 𝑡𝑡𝑖𝑖𝑖𝑖𝛴𝛴 = ∑ 𝑡𝑡𝑖𝑖𝐿𝐿𝐿𝐿∈𝑀𝑀𝑖𝑖𝑖𝑖𝑁𝑁 . Also note that 

the operation of multiplication in sum ∑ 𝑃𝑃𝑖𝑖𝑖𝑖𝑡𝑡𝑖𝑖𝑖𝑖 𝛴𝛴𝑖𝑖,𝑖𝑖  involves fuzzy numbers (𝑃𝑃𝑖𝑖𝑖𝑖 𝑖𝑖 𝑡𝑡𝑖𝑖𝑖𝑖𝛴𝛴 − fuzzy intervals). 
According to [1,3,4,5], multiplication of (L – R) fuzzy intervals 𝑀𝑀 = (𝑚𝑚,𝑚𝑚,𝛼𝛼, 𝛽𝛽)𝐿𝐿𝐿𝐿 and 𝑁𝑁 =
(𝑛𝑛, 𝑛𝑛, 𝛾𝛾, 𝛿𝛿)𝐿𝐿𝐿𝐿takes the following form: 
𝑁𝑁 ∙ 𝑁𝑁 = (𝑚𝑚𝑛𝑛,𝑚𝑚𝑛𝑛,𝑚𝑚𝑛𝑛 − (𝑚𝑚 − 𝛼𝛼)(𝑛𝑛 − 𝛾𝛾), (𝑚𝑚 + 𝛽𝛽)(𝑛𝑛 + 𝛿𝛿) −𝑚𝑚𝑛𝑛)𝐿𝐿𝐿𝐿. 
The objective function 𝐹𝐹(𝑛𝑛𝑖𝑖𝑖𝑖) describing the wagon-hours of accumulation and processing of wagons 
has the following form:  
 𝐹𝐹(𝑛𝑛𝑖𝑖𝑖𝑖) =∑((𝑐𝑐𝑚𝑚)𝑖𝑖𝑖𝑖𝑛𝑛𝑖𝑖𝑖𝑖 + 𝑃𝑃𝑖𝑖𝑖𝑖𝑡𝑡𝑖𝑖𝑖𝑖𝛴𝛴(𝑛𝑛𝑖𝑖𝑖𝑖)) → min

{𝑛𝑛𝑖𝑖𝑖𝑖}
  (1) 

where 
𝑛𝑛𝑖𝑖𝑖𝑖 = {1 if OD pair (𝑖𝑖, 𝑗𝑗) exists0 otherwise  

 and N 
= 

 

An L-function (or an R-function) that satisfies these conditions is called a form function. The 
membership function of a fuzzy interval M can be represented by two functions, L and R, and four 
parameters: (𝑚𝑚,𝑚𝑚) ∈ 𝑅𝑅2 – kernel of fuzzy interval (fig. 1 and 2) and 𝛼𝛼, 𝛽𝛽 ≥ 0 – left and right fuzziness 
coefficients, given by:  

𝜇𝜇𝑝𝑝(𝑢𝑢) =

{
 
 
 
 𝐿𝐿 (

𝑚𝑚 − 𝑢𝑢
𝛼𝛼 )  𝑖𝑖𝑖𝑖 𝑢𝑢 ≤ 𝑚𝑚

1 𝑖𝑖𝑖𝑖 𝑚𝑚 ≤ 𝑢𝑢 ≤ 𝑚𝑚

𝑅𝑅(𝑢𝑢 −𝑚𝑚𝛽𝛽 )  𝑖𝑖𝑖𝑖 𝑢𝑢 ≥ 𝑚𝑚
 

It is convenient to divide wagon flows into two classes depending on their size. A first class consists of 
small flows, including null flows, i.e. 𝑃𝑃𝑖𝑖𝑖𝑖 = 0. A second class encompasses large flows, i.e. 𝑃𝑃𝑖𝑖𝑖𝑖 ≠ 0. 
Thus, a wagon flow 𝑃𝑃𝑖𝑖𝑖𝑖 can be represented as an (L – R) fuzzy interval of the following type: 𝑃𝑃𝑖𝑖𝑖𝑖 =
(𝑚𝑚,𝑚𝑚, 𝛼𝛼, 𝛽𝛽)𝐿𝐿𝐿𝐿. The functions L and R are of the form 𝐿𝐿 (𝑚𝑚−𝑢𝑢𝛼𝛼 ) = 1 − (1 − ℎ) (𝑚𝑚−𝑢𝑢𝛼𝛼 ) if 0 ≤ 𝑢𝑢 ≤ 𝑚𝑚, 

where h is the degree of likelihood that a given wagon flow 𝑁𝑁𝑖𝑖𝑖𝑖 = 0; 0 ≤ ℎ ≤ 1; 𝑅𝑅 (𝑢𝑢−𝑚𝑚𝛽𝛽 ) = 1 − (𝑢𝑢−𝑚𝑚𝛽𝛽 ) 
if 𝑢𝑢 ≥ 𝑚𝑚. Fuzzy first and second-class wagon flows are shown in Figures 1 and 2. 
 
For the first class of wagons it is assumed that ℎ = 0. Let the shortest route between two vertices of 
graph G be denoted by 𝑀𝑀𝑖𝑖𝑖𝑖. 
In this study, wagon flow size is expressed as an interval to take account of real-life instability of and 
fluctuations in railroad freight volumes. Wagon-hour savings for one wagon moved from station i 
through station j without processing is also shown as an (L – R) fuzzy interval with a kernel of most 
feasible values for a given station 𝑡𝑡𝑖𝑖𝑖𝑖 = (𝑡𝑡, 𝑡𝑡, 𝛼𝛼, 𝛽𝛽)𝐿𝐿𝐿𝐿. It is also assumed that 𝑡𝑡𝑖𝑖𝑖𝑖 = 0, i.e. 𝑡𝑡𝑖𝑖𝑖𝑖 is a real 
number belonging to R. Then 𝑡𝑡𝑖𝑖𝑖𝑖 = (0, 0, 0, 0)𝐿𝐿𝐿𝐿, ∀𝐿𝐿, 𝑅𝑅. 
Wagon-hour accumulation (𝑐𝑐𝑚𝑚)𝑖𝑖𝑖𝑖 related to assembling, on station i, a train serving one origin-
destination (OD) pair and travelling towards station j is also given by an (L – R) fuzzy interval. It is 
known that (𝑐𝑐𝑚𝑚)𝑖𝑖𝑖𝑖 = (𝑐𝑐𝑚𝑚)𝑖𝑖𝑝𝑝, where (𝑖𝑖, 𝑝𝑝) – first arc of route 𝑀𝑀𝑖𝑖𝑖𝑖.  
Savings 𝑇𝑇𝑖𝑖𝑖𝑖 associated with the movement of one wagon without processing, when the OD pair (𝑖𝑖, 𝑗𝑗) is 
singled out (branched off): 
 𝑇𝑇𝑖𝑖𝑖𝑖 = ∑ 𝑡𝑡𝑖𝑖𝐿𝐿𝐿𝐿∈𝑀𝑀𝑖𝑖𝑖𝑖

𝐿𝐿≠𝑖𝑖
; 

here, the sum applies to all stations located on the shortest route 𝑀𝑀𝑖𝑖𝑖𝑖 between stations i and j, and is 
calculated as a sum of fuzzy numbers. 
A sum of two (L–R) fuzzy intervals 𝑀𝑀 = (𝑚𝑚,𝑚𝑚,𝛼𝛼, 𝛽𝛽)𝐿𝐿𝐿𝐿 and 𝑁𝑁 = (𝑛𝑛, 𝑛𝑛, 𝛾𝛾, 𝛿𝛿)𝐿𝐿𝐿𝐿 is of the following form 
[1,3,4,5]: 𝑀𝑀+𝑁𝑁 = (𝑚𝑚 + 𝑛𝑛,𝑚𝑚 + 𝑛𝑛, 𝛼𝛼 + 𝛾𝛾, 𝛽𝛽 + 𝛿𝛿)𝐿𝐿𝐿𝐿. Given this, savings 𝑇𝑇𝑖𝑖𝑖𝑖 associated with the 
movement of one wagon, without processing, when the OD pair (𝑖𝑖, 𝑗𝑗) is branched off, also constitute an 
(L–R) fuzzy interval. Assuming that each wagon  𝑃𝑃𝑖𝑖𝑖𝑖 flow should be processed as fast as possible, we 
obtain total processing wagon-hours ∑ 𝑃𝑃𝑖𝑖𝑖𝑖𝑡𝑡𝑖𝑖𝑖𝑖𝛴𝛴𝑖𝑖,𝑖𝑖 , where 𝑡𝑡𝑖𝑖𝑖𝑖𝛴𝛴  is the length of the shortest route 𝑀𝑀𝑖𝑖𝑖𝑖𝑁𝑁 between 
stations i and j in the graph of processing operations N and is given by 𝑡𝑡𝑖𝑖𝑖𝑖𝛴𝛴 = ∑ 𝑡𝑡𝑖𝑖𝐿𝐿𝐿𝐿∈𝑀𝑀𝑖𝑖𝑖𝑖𝑁𝑁 . Also note that 

the operation of multiplication in sum ∑ 𝑃𝑃𝑖𝑖𝑖𝑖𝑡𝑡𝑖𝑖𝑖𝑖 𝛴𝛴𝑖𝑖,𝑖𝑖  involves fuzzy numbers (𝑃𝑃𝑖𝑖𝑖𝑖 𝑖𝑖 𝑡𝑡𝑖𝑖𝑖𝑖𝛴𝛴 − fuzzy intervals). 
According to [1,3,4,5], multiplication of (L – R) fuzzy intervals 𝑀𝑀 = (𝑚𝑚,𝑚𝑚,𝛼𝛼, 𝛽𝛽)𝐿𝐿𝐿𝐿 and 𝑁𝑁 =
(𝑛𝑛, 𝑛𝑛, 𝛾𝛾, 𝛿𝛿)𝐿𝐿𝐿𝐿takes the following form: 
𝑁𝑁 ∙ 𝑁𝑁 = (𝑚𝑚𝑛𝑛,𝑚𝑚𝑛𝑛,𝑚𝑚𝑛𝑛 − (𝑚𝑚 − 𝛼𝛼)(𝑛𝑛 − 𝛾𝛾), (𝑚𝑚 + 𝛽𝛽)(𝑛𝑛 + 𝛿𝛿) −𝑚𝑚𝑛𝑛)𝐿𝐿𝐿𝐿. 
The objective function 𝐹𝐹(𝑛𝑛𝑖𝑖𝑖𝑖) describing the wagon-hours of accumulation and processing of wagons 
has the following form:  
 𝐹𝐹(𝑛𝑛𝑖𝑖𝑖𝑖) =∑((𝑐𝑐𝑚𝑚)𝑖𝑖𝑖𝑖𝑛𝑛𝑖𝑖𝑖𝑖 + 𝑃𝑃𝑖𝑖𝑖𝑖𝑡𝑡𝑖𝑖𝑖𝑖𝛴𝛴(𝑛𝑛𝑖𝑖𝑖𝑖)) → min

{𝑛𝑛𝑖𝑖𝑖𝑖}
  (1) 

where 
𝑛𝑛𝑖𝑖𝑖𝑖 = {1 if OD pair (𝑖𝑖, 𝑗𝑗) exists0 otherwise  

 takes the following form:

 

An L-function (or an R-function) that satisfies these conditions is called a form function. The 
membership function of a fuzzy interval M can be represented by two functions, L and R, and four 
parameters: (𝑚𝑚,𝑚𝑚) ∈ 𝑅𝑅2 – kernel of fuzzy interval (fig. 1 and 2) and 𝛼𝛼, 𝛽𝛽 ≥ 0 – left and right fuzziness 
coefficients, given by:  

𝜇𝜇𝑝𝑝(𝑢𝑢) =

{
 
 
 
 𝐿𝐿 (

𝑚𝑚 − 𝑢𝑢
𝛼𝛼 )  𝑖𝑖𝑖𝑖 𝑢𝑢 ≤ 𝑚𝑚

1 𝑖𝑖𝑖𝑖 𝑚𝑚 ≤ 𝑢𝑢 ≤ 𝑚𝑚

𝑅𝑅(𝑢𝑢 −𝑚𝑚𝛽𝛽 )  𝑖𝑖𝑖𝑖 𝑢𝑢 ≥ 𝑚𝑚
 

It is convenient to divide wagon flows into two classes depending on their size. A first class consists of 
small flows, including null flows, i.e. 𝑃𝑃𝑖𝑖𝑖𝑖 = 0. A second class encompasses large flows, i.e. 𝑃𝑃𝑖𝑖𝑖𝑖 ≠ 0. 
Thus, a wagon flow 𝑃𝑃𝑖𝑖𝑖𝑖 can be represented as an (L – R) fuzzy interval of the following type: 𝑃𝑃𝑖𝑖𝑖𝑖 =
(𝑚𝑚,𝑚𝑚, 𝛼𝛼, 𝛽𝛽)𝐿𝐿𝐿𝐿. The functions L and R are of the form 𝐿𝐿 (𝑚𝑚−𝑢𝑢𝛼𝛼 ) = 1 − (1 − ℎ) (𝑚𝑚−𝑢𝑢𝛼𝛼 ) if 0 ≤ 𝑢𝑢 ≤ 𝑚𝑚, 

where h is the degree of likelihood that a given wagon flow 𝑁𝑁𝑖𝑖𝑖𝑖 = 0; 0 ≤ ℎ ≤ 1; 𝑅𝑅 (𝑢𝑢−𝑚𝑚𝛽𝛽 ) = 1 − (𝑢𝑢−𝑚𝑚𝛽𝛽 ) 
if 𝑢𝑢 ≥ 𝑚𝑚. Fuzzy first and second-class wagon flows are shown in Figures 1 and 2. 
 
For the first class of wagons it is assumed that ℎ = 0. Let the shortest route between two vertices of 
graph G be denoted by 𝑀𝑀𝑖𝑖𝑖𝑖. 
In this study, wagon flow size is expressed as an interval to take account of real-life instability of and 
fluctuations in railroad freight volumes. Wagon-hour savings for one wagon moved from station i 
through station j without processing is also shown as an (L – R) fuzzy interval with a kernel of most 
feasible values for a given station 𝑡𝑡𝑖𝑖𝑖𝑖 = (𝑡𝑡, 𝑡𝑡, 𝛼𝛼, 𝛽𝛽)𝐿𝐿𝐿𝐿. It is also assumed that 𝑡𝑡𝑖𝑖𝑖𝑖 = 0, i.e. 𝑡𝑡𝑖𝑖𝑖𝑖 is a real 
number belonging to R. Then 𝑡𝑡𝑖𝑖𝑖𝑖 = (0, 0, 0, 0)𝐿𝐿𝐿𝐿, ∀𝐿𝐿, 𝑅𝑅. 
Wagon-hour accumulation (𝑐𝑐𝑚𝑚)𝑖𝑖𝑖𝑖 related to assembling, on station i, a train serving one origin-
destination (OD) pair and travelling towards station j is also given by an (L – R) fuzzy interval. It is 
known that (𝑐𝑐𝑚𝑚)𝑖𝑖𝑖𝑖 = (𝑐𝑐𝑚𝑚)𝑖𝑖𝑝𝑝, where (𝑖𝑖, 𝑝𝑝) – first arc of route 𝑀𝑀𝑖𝑖𝑖𝑖.  
Savings 𝑇𝑇𝑖𝑖𝑖𝑖 associated with the movement of one wagon without processing, when the OD pair (𝑖𝑖, 𝑗𝑗) is 
singled out (branched off): 
 𝑇𝑇𝑖𝑖𝑖𝑖 = ∑ 𝑡𝑡𝑖𝑖𝐿𝐿𝐿𝐿∈𝑀𝑀𝑖𝑖𝑖𝑖

𝐿𝐿≠𝑖𝑖
; 

here, the sum applies to all stations located on the shortest route 𝑀𝑀𝑖𝑖𝑖𝑖 between stations i and j, and is 
calculated as a sum of fuzzy numbers. 
A sum of two (L–R) fuzzy intervals 𝑀𝑀 = (𝑚𝑚,𝑚𝑚,𝛼𝛼, 𝛽𝛽)𝐿𝐿𝐿𝐿 and 𝑁𝑁 = (𝑛𝑛, 𝑛𝑛, 𝛾𝛾, 𝛿𝛿)𝐿𝐿𝐿𝐿 is of the following form 
[1,3,4,5]: 𝑀𝑀+𝑁𝑁 = (𝑚𝑚 + 𝑛𝑛,𝑚𝑚 + 𝑛𝑛, 𝛼𝛼 + 𝛾𝛾, 𝛽𝛽 + 𝛿𝛿)𝐿𝐿𝐿𝐿. Given this, savings 𝑇𝑇𝑖𝑖𝑖𝑖 associated with the 
movement of one wagon, without processing, when the OD pair (𝑖𝑖, 𝑗𝑗) is branched off, also constitute an 
(L–R) fuzzy interval. Assuming that each wagon  𝑃𝑃𝑖𝑖𝑖𝑖 flow should be processed as fast as possible, we 
obtain total processing wagon-hours ∑ 𝑃𝑃𝑖𝑖𝑖𝑖𝑡𝑡𝑖𝑖𝑖𝑖𝛴𝛴𝑖𝑖,𝑖𝑖 , where 𝑡𝑡𝑖𝑖𝑖𝑖𝛴𝛴  is the length of the shortest route 𝑀𝑀𝑖𝑖𝑖𝑖𝑁𝑁 between 
stations i and j in the graph of processing operations N and is given by 𝑡𝑡𝑖𝑖𝑖𝑖𝛴𝛴 = ∑ 𝑡𝑡𝑖𝑖𝐿𝐿𝐿𝐿∈𝑀𝑀𝑖𝑖𝑖𝑖𝑁𝑁 . Also note that 

the operation of multiplication in sum ∑ 𝑃𝑃𝑖𝑖𝑖𝑖𝑡𝑡𝑖𝑖𝑖𝑖 𝛴𝛴𝑖𝑖,𝑖𝑖  involves fuzzy numbers (𝑃𝑃𝑖𝑖𝑖𝑖 𝑖𝑖 𝑡𝑡𝑖𝑖𝑖𝑖𝛴𝛴 − fuzzy intervals). 
According to [1,3,4,5], multiplication of (L – R) fuzzy intervals 𝑀𝑀 = (𝑚𝑚,𝑚𝑚,𝛼𝛼, 𝛽𝛽)𝐿𝐿𝐿𝐿 and 𝑁𝑁 =
(𝑛𝑛, 𝑛𝑛, 𝛾𝛾, 𝛿𝛿)𝐿𝐿𝐿𝐿takes the following form: 
𝑁𝑁 ∙ 𝑁𝑁 = (𝑚𝑚𝑛𝑛,𝑚𝑚𝑛𝑛,𝑚𝑚𝑛𝑛 − (𝑚𝑚 − 𝛼𝛼)(𝑛𝑛 − 𝛾𝛾), (𝑚𝑚 + 𝛽𝛽)(𝑛𝑛 + 𝛿𝛿) −𝑚𝑚𝑛𝑛)𝐿𝐿𝐿𝐿. 
The objective function 𝐹𝐹(𝑛𝑛𝑖𝑖𝑖𝑖) describing the wagon-hours of accumulation and processing of wagons 
has the following form:  
 𝐹𝐹(𝑛𝑛𝑖𝑖𝑖𝑖) =∑((𝑐𝑐𝑚𝑚)𝑖𝑖𝑖𝑖𝑛𝑛𝑖𝑖𝑖𝑖 + 𝑃𝑃𝑖𝑖𝑖𝑖𝑡𝑡𝑖𝑖𝑖𝑖𝛴𝛴(𝑛𝑛𝑖𝑖𝑖𝑖)) → min

{𝑛𝑛𝑖𝑖𝑖𝑖}
  (1) 

where 
𝑛𝑛𝑖𝑖𝑖𝑖 = {1 if OD pair (𝑖𝑖, 𝑗𝑗) exists0 otherwise  

 

An L-function (or an R-function) that satisfies these conditions is called a form function. The 
membership function of a fuzzy interval M can be represented by two functions, L and R, and four 
parameters: (𝑚𝑚,𝑚𝑚) ∈ 𝑅𝑅2 – kernel of fuzzy interval (fig. 1 and 2) and 𝛼𝛼, 𝛽𝛽 ≥ 0 – left and right fuzziness 
coefficients, given by:  

𝜇𝜇𝑝𝑝(𝑢𝑢) =

{
 
 
 
 𝐿𝐿 (

𝑚𝑚 − 𝑢𝑢
𝛼𝛼 )  𝑖𝑖𝑖𝑖 𝑢𝑢 ≤ 𝑚𝑚

1 𝑖𝑖𝑖𝑖 𝑚𝑚 ≤ 𝑢𝑢 ≤ 𝑚𝑚

𝑅𝑅(𝑢𝑢 −𝑚𝑚𝛽𝛽 )  𝑖𝑖𝑖𝑖 𝑢𝑢 ≥ 𝑚𝑚
 

It is convenient to divide wagon flows into two classes depending on their size. A first class consists of 
small flows, including null flows, i.e. 𝑃𝑃𝑖𝑖𝑖𝑖 = 0. A second class encompasses large flows, i.e. 𝑃𝑃𝑖𝑖𝑖𝑖 ≠ 0. 
Thus, a wagon flow 𝑃𝑃𝑖𝑖𝑖𝑖 can be represented as an (L – R) fuzzy interval of the following type: 𝑃𝑃𝑖𝑖𝑖𝑖 =
(𝑚𝑚,𝑚𝑚, 𝛼𝛼, 𝛽𝛽)𝐿𝐿𝐿𝐿. The functions L and R are of the form 𝐿𝐿 (𝑚𝑚−𝑢𝑢𝛼𝛼 ) = 1 − (1 − ℎ) (𝑚𝑚−𝑢𝑢𝛼𝛼 ) if 0 ≤ 𝑢𝑢 ≤ 𝑚𝑚, 

where h is the degree of likelihood that a given wagon flow 𝑁𝑁𝑖𝑖𝑖𝑖 = 0; 0 ≤ ℎ ≤ 1; 𝑅𝑅 (𝑢𝑢−𝑚𝑚𝛽𝛽 ) = 1 − (𝑢𝑢−𝑚𝑚𝛽𝛽 ) 
if 𝑢𝑢 ≥ 𝑚𝑚. Fuzzy first and second-class wagon flows are shown in Figures 1 and 2. 
 
For the first class of wagons it is assumed that ℎ = 0. Let the shortest route between two vertices of 
graph G be denoted by 𝑀𝑀𝑖𝑖𝑖𝑖. 
In this study, wagon flow size is expressed as an interval to take account of real-life instability of and 
fluctuations in railroad freight volumes. Wagon-hour savings for one wagon moved from station i 
through station j without processing is also shown as an (L – R) fuzzy interval with a kernel of most 
feasible values for a given station 𝑡𝑡𝑖𝑖𝑖𝑖 = (𝑡𝑡, 𝑡𝑡, 𝛼𝛼, 𝛽𝛽)𝐿𝐿𝐿𝐿. It is also assumed that 𝑡𝑡𝑖𝑖𝑖𝑖 = 0, i.e. 𝑡𝑡𝑖𝑖𝑖𝑖 is a real 
number belonging to R. Then 𝑡𝑡𝑖𝑖𝑖𝑖 = (0, 0, 0, 0)𝐿𝐿𝐿𝐿, ∀𝐿𝐿, 𝑅𝑅. 
Wagon-hour accumulation (𝑐𝑐𝑚𝑚)𝑖𝑖𝑖𝑖 related to assembling, on station i, a train serving one origin-
destination (OD) pair and travelling towards station j is also given by an (L – R) fuzzy interval. It is 
known that (𝑐𝑐𝑚𝑚)𝑖𝑖𝑖𝑖 = (𝑐𝑐𝑚𝑚)𝑖𝑖𝑝𝑝, where (𝑖𝑖, 𝑝𝑝) – first arc of route 𝑀𝑀𝑖𝑖𝑖𝑖.  
Savings 𝑇𝑇𝑖𝑖𝑖𝑖 associated with the movement of one wagon without processing, when the OD pair (𝑖𝑖, 𝑗𝑗) is 
singled out (branched off): 
 𝑇𝑇𝑖𝑖𝑖𝑖 = ∑ 𝑡𝑡𝑖𝑖𝐿𝐿𝐿𝐿∈𝑀𝑀𝑖𝑖𝑖𝑖

𝐿𝐿≠𝑖𝑖
; 

here, the sum applies to all stations located on the shortest route 𝑀𝑀𝑖𝑖𝑖𝑖 between stations i and j, and is 
calculated as a sum of fuzzy numbers. 
A sum of two (L–R) fuzzy intervals 𝑀𝑀 = (𝑚𝑚,𝑚𝑚,𝛼𝛼, 𝛽𝛽)𝐿𝐿𝐿𝐿 and 𝑁𝑁 = (𝑛𝑛, 𝑛𝑛, 𝛾𝛾, 𝛿𝛿)𝐿𝐿𝐿𝐿 is of the following form 
[1,3,4,5]: 𝑀𝑀+𝑁𝑁 = (𝑚𝑚 + 𝑛𝑛,𝑚𝑚 + 𝑛𝑛, 𝛼𝛼 + 𝛾𝛾, 𝛽𝛽 + 𝛿𝛿)𝐿𝐿𝐿𝐿. Given this, savings 𝑇𝑇𝑖𝑖𝑖𝑖 associated with the 
movement of one wagon, without processing, when the OD pair (𝑖𝑖, 𝑗𝑗) is branched off, also constitute an 
(L–R) fuzzy interval. Assuming that each wagon  𝑃𝑃𝑖𝑖𝑖𝑖 flow should be processed as fast as possible, we 
obtain total processing wagon-hours ∑ 𝑃𝑃𝑖𝑖𝑖𝑖𝑡𝑡𝑖𝑖𝑖𝑖𝛴𝛴𝑖𝑖,𝑖𝑖 , where 𝑡𝑡𝑖𝑖𝑖𝑖𝛴𝛴  is the length of the shortest route 𝑀𝑀𝑖𝑖𝑖𝑖𝑁𝑁 between 
stations i and j in the graph of processing operations N and is given by 𝑡𝑡𝑖𝑖𝑖𝑖𝛴𝛴 = ∑ 𝑡𝑡𝑖𝑖𝐿𝐿𝐿𝐿∈𝑀𝑀𝑖𝑖𝑖𝑖𝑁𝑁 . Also note that 

the operation of multiplication in sum ∑ 𝑃𝑃𝑖𝑖𝑖𝑖𝑡𝑡𝑖𝑖𝑖𝑖 𝛴𝛴𝑖𝑖,𝑖𝑖  involves fuzzy numbers (𝑃𝑃𝑖𝑖𝑖𝑖 𝑖𝑖 𝑡𝑡𝑖𝑖𝑖𝑖𝛴𝛴 − fuzzy intervals). 
According to [1,3,4,5], multiplication of (L – R) fuzzy intervals 𝑀𝑀 = (𝑚𝑚,𝑚𝑚,𝛼𝛼, 𝛽𝛽)𝐿𝐿𝐿𝐿 and 𝑁𝑁 =
(𝑛𝑛, 𝑛𝑛, 𝛾𝛾, 𝛿𝛿)𝐿𝐿𝐿𝐿takes the following form: 
𝑁𝑁 ∙ 𝑁𝑁 = (𝑚𝑚𝑛𝑛,𝑚𝑚𝑛𝑛,𝑚𝑚𝑛𝑛 − (𝑚𝑚 − 𝛼𝛼)(𝑛𝑛 − 𝛾𝛾), (𝑚𝑚 + 𝛽𝛽)(𝑛𝑛 + 𝛿𝛿) −𝑚𝑚𝑛𝑛)𝐿𝐿𝐿𝐿. 
The objective function 𝐹𝐹(𝑛𝑛𝑖𝑖𝑖𝑖) describing the wagon-hours of accumulation and processing of wagons 
has the following form:  
 𝐹𝐹(𝑛𝑛𝑖𝑖𝑖𝑖) =∑((𝑐𝑐𝑚𝑚)𝑖𝑖𝑖𝑖𝑛𝑛𝑖𝑖𝑖𝑖 + 𝑃𝑃𝑖𝑖𝑖𝑖𝑡𝑡𝑖𝑖𝑖𝑖𝛴𝛴(𝑛𝑛𝑖𝑖𝑖𝑖)) → min

{𝑛𝑛𝑖𝑖𝑖𝑖}
  (1) 

where 
𝑛𝑛𝑖𝑖𝑖𝑖 = {1 if OD pair (𝑖𝑖, 𝑗𝑗) exists0 otherwise  

The objective function F(nij) describing the 
wagon-hours of accumulation and processing of 
wagons has the following form: 

 

1 
 

𝐿𝐿(0) = 1, and also ∀𝑢𝑢 > 0, 𝐿𝐿(𝑢𝑢) < 1 ∀𝑢𝑢 < 1, 𝐿𝐿(𝑢𝑢) > 0, 
𝐿𝐿 = 0 or 𝐿𝐿(𝑢𝑢) > 0, ∀𝑢𝑢   𝑎𝑎𝑎𝑎𝑎𝑎     𝐿𝐿(+∞) = 0 

𝜇𝜇𝑝𝑝(𝑢𝑢) =

{
 
 
 
 𝐿𝐿 (

𝑚𝑚 − 𝑢𝑢
𝛼𝛼 )  𝑖𝑖𝑖𝑖 𝑢𝑢 ≤ 𝑚𝑚

1 𝑖𝑖𝑖𝑖 𝑚𝑚 ≤ 𝑢𝑢 ≤ 𝑚𝑚

𝑅𝑅 (𝑢𝑢 −𝑚𝑚𝛽𝛽 )  𝑖𝑖𝑖𝑖 𝑢𝑢 ≥ 𝑚𝑚
 

                                                                      𝑇𝑇𝑖𝑖𝑖𝑖 = ∑ 𝑡𝑡𝑖𝑖𝑖𝑖𝑖𝑖∈𝑀𝑀𝑖𝑖𝑖𝑖
𝑖𝑖≠𝑖𝑖

; 

 𝐹𝐹(𝑎𝑎𝑖𝑖𝑖𝑖) =∑((𝑐𝑐𝑚𝑚)𝑖𝑖𝑖𝑖𝑎𝑎𝑖𝑖𝑖𝑖 + 𝑃𝑃𝑖𝑖𝑖𝑖𝑡𝑡𝑖𝑖𝑖𝑖𝛴𝛴 (𝑎𝑎𝑖𝑖𝑖𝑖)) → min
{𝑛𝑛𝑖𝑖𝑖𝑖}

  (1) 

 

𝑎𝑎𝑖𝑖𝑖𝑖 = {1 if OD pair (𝑖𝑖, 𝑗𝑗) exists0 otherwise  

 

 𝜆𝜆𝑆𝑆𝑘𝑘 = 𝜆𝜆(𝐺𝐺𝑆𝑆𝑘𝑘) =∑(𝑐𝑐𝑚𝑚)𝑖𝑖𝑖𝑖𝑎𝑎𝑖𝑖𝑖𝑖(𝑁𝑁𝑆𝑆(𝑘𝑘)𝑘𝑘 ) +∑𝑃𝑃𝑖𝑖𝑖𝑖
𝑖𝑖,𝑖𝑖𝑖𝑖,𝑖𝑖

𝑡𝑡𝑖𝑖𝑖𝑖𝛴𝛴 (𝑁𝑁𝑆𝑆(𝑘𝑘)𝑘𝑘 ∪ �̃�𝑁𝑆𝑆(𝑘𝑘)𝑘𝑘 ) (2) 

 

 𝐹𝐹 (𝑁𝑁𝑆𝑆(𝑘𝑘)𝑘𝑘 ∪ (𝑖𝑖, 𝑗𝑗)) ≻ 𝐹𝐹(𝑁𝑁𝑆𝑆(𝑘𝑘)𝑘𝑘 ) (3) 

 

1). 𝐵𝐵𝑀𝑀([𝑁𝑁,+∞)) = 𝐵𝐵(𝑋𝑋 ≥ 𝑌𝑌) = 𝑠𝑠𝑢𝑢𝑠𝑠
𝑢𝑢
𝑚𝑚𝑖𝑖𝑎𝑎
 (𝜇𝜇𝑀𝑀(𝑢𝑢),

𝑠𝑠𝑢𝑢𝑠𝑠
𝑣𝑣 ≤ 𝑢𝑢(𝑣𝑣)) =

= 𝑠𝑠𝑢𝑢𝑠𝑠
𝑢𝑢 ≥ 𝑣𝑣

𝑚𝑚𝑖𝑖𝑎𝑎
 (𝜇𝜇𝑀𝑀(𝑢𝑢), 𝜇𝜇𝑁𝑁(𝑣𝑣))   

(4) 

 

2). 𝐵𝐵𝑀𝑀((𝑁𝑁,+∞)) = 𝐵𝐵(𝑋𝑋 > 𝑌𝑌) = 𝑠𝑠𝑢𝑢𝑠𝑠𝑢𝑢
𝑚𝑚𝑖𝑖𝑎𝑎
 (𝜇𝜇𝑀𝑀(𝑢𝑢), 𝑖𝑖𝑎𝑎𝑖𝑖(1 − 𝜇𝜇𝑁𝑁(𝑣𝑣))) =

= 𝑠𝑠𝑢𝑢𝑠𝑠𝑢𝑢
𝑖𝑖𝑎𝑎𝑖𝑖
𝑣𝑣 > 𝑢𝑢

𝑚𝑚𝑖𝑖𝑎𝑎
 (𝜇𝜇𝑀𝑀(𝑢𝑢), 𝜇𝜇𝑁𝑁(𝑣𝑣))   

(5) 

 

3). 𝐻𝐻𝑀𝑀([𝑁𝑁,+∞)) = 𝐻𝐻(𝑋𝑋 ≥ 𝑌𝑌) = 𝑖𝑖𝑎𝑎𝑖𝑖𝑢𝑢
𝑚𝑚𝑎𝑎𝑚𝑚
 (1 − 𝜇𝜇𝑀𝑀(𝑢𝑢),

𝑠𝑠𝑢𝑢𝑠𝑠
𝑣𝑣 ≤ 𝑢𝑢𝜇𝜇𝑁𝑁(𝑣𝑣)) =

= 𝑖𝑖𝑎𝑎𝑖𝑖𝑢𝑢
𝑠𝑠𝑢𝑢𝑠𝑠
𝑢𝑢 ≤ 𝑣𝑣

𝑚𝑚𝑎𝑎𝑚𝑚
 (1 − 𝜇𝜇𝑀𝑀(𝑢𝑢), 𝜇𝜇𝑁𝑁(𝑣𝑣))   

(6) 

 

4). 𝐻𝐻𝑀𝑀((𝑁𝑁, +∞)) = 𝐻𝐻(𝑋𝑋 > 𝑌𝑌) = 𝑖𝑖𝑎𝑎𝑖𝑖𝑢𝑢
𝑚𝑚𝑎𝑎𝑚𝑚
 (1 − 𝜇𝜇𝑀𝑀(𝑢𝑢), 𝑖𝑖𝑎𝑎𝑖𝑖(1 − 𝜇𝜇𝑁𝑁(𝑣𝑣))) =

= 1 − 𝑠𝑠𝑢𝑢𝑠𝑠
𝑢𝑢 ≤ 𝑣𝑣

𝑚𝑚𝑖𝑖𝑎𝑎
 (𝜇𝜇𝑀𝑀(𝑢𝑢), 𝜇𝜇𝑁𝑁(𝑣𝑣))   

(7) 

 

 

where:               (1)

 

 

An L-function (or an R-function) that satisfies these conditions is called a form function. The 
membership function of a fuzzy interval M can be represented by two functions, L and R, and four 
parameters: (𝑚𝑚,𝑚𝑚) ∈ 𝑅𝑅2 – kernel of fuzzy interval (fig. 1 and 2) and 𝛼𝛼, 𝛽𝛽 ≥ 0 – left and right fuzziness 
coefficients, given by:  

𝜇𝜇𝑝𝑝(𝑢𝑢) =

{
 
 
 
 𝐿𝐿 (

𝑚𝑚 − 𝑢𝑢
𝛼𝛼 )  𝑖𝑖𝑖𝑖 𝑢𝑢 ≤ 𝑚𝑚

1 𝑖𝑖𝑖𝑖 𝑚𝑚 ≤ 𝑢𝑢 ≤ 𝑚𝑚

𝑅𝑅(𝑢𝑢 −𝑚𝑚𝛽𝛽 )  𝑖𝑖𝑖𝑖 𝑢𝑢 ≥ 𝑚𝑚
 

It is convenient to divide wagon flows into two classes depending on their size. A first class consists of 
small flows, including null flows, i.e. 𝑃𝑃𝑖𝑖𝑖𝑖 = 0. A second class encompasses large flows, i.e. 𝑃𝑃𝑖𝑖𝑖𝑖 ≠ 0. 
Thus, a wagon flow 𝑃𝑃𝑖𝑖𝑖𝑖 can be represented as an (L – R) fuzzy interval of the following type: 𝑃𝑃𝑖𝑖𝑖𝑖 =
(𝑚𝑚,𝑚𝑚, 𝛼𝛼, 𝛽𝛽)𝐿𝐿𝐿𝐿. The functions L and R are of the form 𝐿𝐿 (𝑚𝑚−𝑢𝑢𝛼𝛼 ) = 1 − (1 − ℎ) (𝑚𝑚−𝑢𝑢𝛼𝛼 ) if 0 ≤ 𝑢𝑢 ≤ 𝑚𝑚, 

where h is the degree of likelihood that a given wagon flow 𝑁𝑁𝑖𝑖𝑖𝑖 = 0; 0 ≤ ℎ ≤ 1; 𝑅𝑅 (𝑢𝑢−𝑚𝑚𝛽𝛽 ) = 1 − (𝑢𝑢−𝑚𝑚𝛽𝛽 ) 
if 𝑢𝑢 ≥ 𝑚𝑚. Fuzzy first and second-class wagon flows are shown in Figures 1 and 2. 
 
For the first class of wagons it is assumed that ℎ = 0. Let the shortest route between two vertices of 
graph G be denoted by 𝑀𝑀𝑖𝑖𝑖𝑖. 
In this study, wagon flow size is expressed as an interval to take account of real-life instability of and 
fluctuations in railroad freight volumes. Wagon-hour savings for one wagon moved from station i 
through station j without processing is also shown as an (L – R) fuzzy interval with a kernel of most 
feasible values for a given station 𝑡𝑡𝑖𝑖𝑖𝑖 = (𝑡𝑡, 𝑡𝑡, 𝛼𝛼, 𝛽𝛽)𝐿𝐿𝐿𝐿. It is also assumed that 𝑡𝑡𝑖𝑖𝑖𝑖 = 0, i.e. 𝑡𝑡𝑖𝑖𝑖𝑖 is a real 
number belonging to R. Then 𝑡𝑡𝑖𝑖𝑖𝑖 = (0, 0, 0, 0)𝐿𝐿𝐿𝐿, ∀𝐿𝐿, 𝑅𝑅. 
Wagon-hour accumulation (𝑐𝑐𝑚𝑚)𝑖𝑖𝑖𝑖 related to assembling, on station i, a train serving one origin-
destination (OD) pair and travelling towards station j is also given by an (L – R) fuzzy interval. It is 
known that (𝑐𝑐𝑚𝑚)𝑖𝑖𝑖𝑖 = (𝑐𝑐𝑚𝑚)𝑖𝑖𝑝𝑝, where (𝑖𝑖, 𝑝𝑝) – first arc of route 𝑀𝑀𝑖𝑖𝑖𝑖.  
Savings 𝑇𝑇𝑖𝑖𝑖𝑖 associated with the movement of one wagon without processing, when the OD pair (𝑖𝑖, 𝑗𝑗) is 
singled out (branched off): 
 𝑇𝑇𝑖𝑖𝑖𝑖 = ∑ 𝑡𝑡𝑖𝑖𝐿𝐿𝐿𝐿∈𝑀𝑀𝑖𝑖𝑖𝑖

𝐿𝐿≠𝑖𝑖
; 

here, the sum applies to all stations located on the shortest route 𝑀𝑀𝑖𝑖𝑖𝑖 between stations i and j, and is 
calculated as a sum of fuzzy numbers. 
A sum of two (L–R) fuzzy intervals 𝑀𝑀 = (𝑚𝑚,𝑚𝑚,𝛼𝛼, 𝛽𝛽)𝐿𝐿𝐿𝐿 and 𝑁𝑁 = (𝑛𝑛, 𝑛𝑛, 𝛾𝛾, 𝛿𝛿)𝐿𝐿𝐿𝐿 is of the following form 
[1,3,4,5]: 𝑀𝑀+𝑁𝑁 = (𝑚𝑚 + 𝑛𝑛,𝑚𝑚 + 𝑛𝑛, 𝛼𝛼 + 𝛾𝛾, 𝛽𝛽 + 𝛿𝛿)𝐿𝐿𝐿𝐿. Given this, savings 𝑇𝑇𝑖𝑖𝑖𝑖 associated with the 
movement of one wagon, without processing, when the OD pair (𝑖𝑖, 𝑗𝑗) is branched off, also constitute an 
(L–R) fuzzy interval. Assuming that each wagon  𝑃𝑃𝑖𝑖𝑖𝑖 flow should be processed as fast as possible, we 
obtain total processing wagon-hours ∑ 𝑃𝑃𝑖𝑖𝑖𝑖𝑡𝑡𝑖𝑖𝑖𝑖𝛴𝛴𝑖𝑖,𝑖𝑖 , where 𝑡𝑡𝑖𝑖𝑖𝑖𝛴𝛴  is the length of the shortest route 𝑀𝑀𝑖𝑖𝑖𝑖𝑁𝑁 between 
stations i and j in the graph of processing operations N and is given by 𝑡𝑡𝑖𝑖𝑖𝑖𝛴𝛴 = ∑ 𝑡𝑡𝑖𝑖𝐿𝐿𝐿𝐿∈𝑀𝑀𝑖𝑖𝑖𝑖𝑁𝑁 . Also note that 

the operation of multiplication in sum ∑ 𝑃𝑃𝑖𝑖𝑖𝑖𝑡𝑡𝑖𝑖𝑖𝑖 𝛴𝛴𝑖𝑖,𝑖𝑖  involves fuzzy numbers (𝑃𝑃𝑖𝑖𝑖𝑖 𝑖𝑖 𝑡𝑡𝑖𝑖𝑖𝑖𝛴𝛴 − fuzzy intervals). 
According to [1,3,4,5], multiplication of (L – R) fuzzy intervals 𝑀𝑀 = (𝑚𝑚,𝑚𝑚,𝛼𝛼, 𝛽𝛽)𝐿𝐿𝐿𝐿 and 𝑁𝑁 =
(𝑛𝑛, 𝑛𝑛, 𝛾𝛾, 𝛿𝛿)𝐿𝐿𝐿𝐿takes the following form: 
𝑁𝑁 ∙ 𝑁𝑁 = (𝑚𝑚𝑛𝑛,𝑚𝑚𝑛𝑛,𝑚𝑚𝑛𝑛 − (𝑚𝑚 − 𝛼𝛼)(𝑛𝑛 − 𝛾𝛾), (𝑚𝑚 + 𝛽𝛽)(𝑛𝑛 + 𝛿𝛿) −𝑚𝑚𝑛𝑛)𝐿𝐿𝐿𝐿. 
The objective function 𝐹𝐹(𝑛𝑛𝑖𝑖𝑖𝑖) describing the wagon-hours of accumulation and processing of wagons 
has the following form:  
 𝐹𝐹(𝑛𝑛𝑖𝑖𝑖𝑖) =∑((𝑐𝑐𝑚𝑚)𝑖𝑖𝑖𝑖𝑛𝑛𝑖𝑖𝑖𝑖 + 𝑃𝑃𝑖𝑖𝑖𝑖𝑡𝑡𝑖𝑖𝑖𝑖𝛴𝛴(𝑛𝑛𝑖𝑖𝑖𝑖)) → min

{𝑛𝑛𝑖𝑖𝑖𝑖}
  (1) 

where 
𝑛𝑛𝑖𝑖𝑖𝑖 = {1 if OD pair (𝑖𝑖, 𝑗𝑗) exists0 otherwise  

Function (1) will be used later on in this paper 
to solve a discrete programming problem using 
the branch-and-bound method. The estimate of 
the objective function (1) is:

1 
 

𝐿𝐿(0) = 1, and also ∀𝑢𝑢 > 0, 𝐿𝐿(𝑢𝑢) < 1 ∀𝑢𝑢 < 1, 𝐿𝐿(𝑢𝑢) > 0, 
𝐿𝐿 = 0 or 𝐿𝐿(𝑢𝑢) > 0, ∀𝑢𝑢   𝑎𝑎𝑎𝑎𝑎𝑎     𝐿𝐿(+∞) = 0 

𝜇𝜇𝑝𝑝(𝑢𝑢) =

{
 
 
 
 𝐿𝐿 (

𝑚𝑚 − 𝑢𝑢
𝛼𝛼 )  𝑖𝑖𝑖𝑖 𝑢𝑢 ≤ 𝑚𝑚

1 𝑖𝑖𝑖𝑖 𝑚𝑚 ≤ 𝑢𝑢 ≤ 𝑚𝑚

𝑅𝑅 (𝑢𝑢 −𝑚𝑚𝛽𝛽 )  𝑖𝑖𝑖𝑖 𝑢𝑢 ≥ 𝑚𝑚
 

                                                                      𝑇𝑇𝑖𝑖𝑖𝑖 = ∑ 𝑡𝑡𝑖𝑖𝑖𝑖𝑖𝑖∈𝑀𝑀𝑖𝑖𝑖𝑖
𝑖𝑖≠𝑖𝑖

; 
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Function (1) will be used later on in this paper to solve a discrete programming problem using the 
branch-and-bound method.  
The estimate of the objective function (1) is: 
 𝜆𝜆𝑆𝑆

𝑘𝑘 = 𝜆𝜆(𝐺𝐺𝑆𝑆
𝑘𝑘) = ∑(𝑐𝑐𝑐𝑐)𝑖𝑖𝑖𝑖𝑛𝑛𝑖𝑖𝑖𝑖(𝑁𝑁𝑆𝑆(𝑘𝑘)

𝑘𝑘 ) + ∑ 𝑃𝑃𝑖𝑖𝑖𝑖
𝑖𝑖,𝑖𝑖𝑖𝑖,𝑖𝑖

𝑡𝑡𝑖𝑖𝑖𝑖
𝛴𝛴 (𝑁𝑁𝑆𝑆(𝑘𝑘)

𝑘𝑘 ∪ �̃�𝑁𝑆𝑆(𝑘𝑘)
𝑘𝑘 ) (2) 

where 𝐺𝐺𝑆𝑆
𝑘𝑘 is one of the subsets created in the k-th branching step, 𝑁𝑁𝑆𝑆(𝑘𝑘)

𝑘𝑘  is a set of OD pairs included in 
the optimal plan in the k-th step of branching, and �̃�𝑁𝑆𝑆(𝑘𝑘)

𝑘𝑘  is a set of OD pairs analysed in the k-th step of 
branching.  
Set 𝑁𝑁𝑆𝑆(𝑘𝑘)

𝑘𝑘  is the set of necessary OD pairs in the k-th step of branching. Set �̃�𝑁𝑆𝑆(𝑘𝑘)
𝑘𝑘  includes any OD pair 

that does not belong to 𝑁𝑁𝑆𝑆(𝑘𝑘)
𝑘𝑘  and meets the following condition: 

 𝐹𝐹 (𝑁𝑁𝑆𝑆(𝑘𝑘)
𝑘𝑘 ∪ (𝑖𝑖, 𝑗𝑗)) ≻ 𝐹𝐹(𝑁𝑁𝑆𝑆(𝑘𝑘)

𝑘𝑘 ) (3) 

where ≻ is a preference symbol. 
Each estimate of the objective function (1) is an (L – R) fuzzy interval. The estimates are compared in 
the following way: in accordance with the possibility theory, fuzzy intervals M and N are compared 
using indices of possibility and necessity of fuzzy events. To find those indices, the possibility and 
necessity of fuzzy events are determined [𝑁𝑁, +∞) 𝑎𝑎𝑛𝑛𝑎𝑎 (𝑁𝑁, +∞) for the distribution function 𝜇𝜇𝑚𝑚. 
 
B are possibility measures, and H are necessity measures[4]. 
In the case of (L – R) fuzzy intervals, determining the four indices (4 ÷ 7) leads to finding the points 
of intersection of their membership functions. For instance, if  
𝑀𝑀 = (𝑐𝑐, 𝑐𝑐, 𝛼𝛼, 𝛽𝛽)𝐿𝐿𝐿𝐿 and 𝑁𝑁 = (𝑛𝑛, 𝑛𝑛, 𝛾𝛾, 𝛿𝛿)𝐿𝐿𝐿𝐿, then expressions (4 ÷ 7) take the following form: 
   

It is easy to notice that formulas (8 ÷ 11) are not true when the sum of fuzziness coefficients is 0, i.e. 
when M and N are regular closed intervals. In that case, the zero fuzziness coefficients should be 
replaced with positive coefficients belonging to interval (0,1) so that the membership functions intersect 
at a point whose Y-coordinate lies outside interval [0,1]. Moreover, the following operations are true: 
- if 𝑐𝑐 = 𝑛𝑛, 𝛽𝛽 + 𝛾𝛾 = 0, then, to calculate 𝐵𝐵(𝑋𝑋 ≥ 𝑌𝑌), coefficients 𝛽𝛽, 𝛾𝛾 can be replaced with any positive 
number; 
- if 𝑐𝑐 = 𝑛𝑛, 𝛼𝛼 + 𝛿𝛿 = 0, then, to calculate 𝐻𝐻(𝑋𝑋 > 𝑌𝑌), coefficients 𝛼𝛼, 𝛿𝛿 can be replaced with any positive 
number; 
- if 𝑐𝑐 = 𝑛𝑛, 𝛼𝛼 + 𝛾𝛾 = 0, then 𝐻𝐻(𝑋𝑋 ≥ 𝑌𝑌) = 0; 
- if 𝑐𝑐 = 𝑛𝑛, 𝛽𝛽 + 𝛿𝛿 = 0, then 𝐵𝐵(𝑋𝑋 > 𝑌𝑌) = 0. 
Example [2] 
Determine an optimal railroad blocking plan under relative uncertainty for a railway network region 
shown in Figure 3. 
Figure 3. Region of a railway network 
Fuzzy wagon-hours of accumulation 𝑐𝑐𝑐𝑐𝑖𝑖𝑖𝑖 = (980, 1020, 5, 5), where 𝑖𝑖, 𝑗𝑗 = 1,6. 
Fuzzy wagon flows are shown in Table 1. 
Table 1. Wagon flows 
The savings of wagon-hours for wagons moved without processing have the following fuzzy values: 

𝑡𝑡21 = (3, 5, 1, 1); 𝑡𝑡32 = (2, 4, 1, 1); 𝑡𝑡43 = (2, 4, 1, 1); 𝑡𝑡54 = (3, 5, 1, 1).  
Each vertex of the solution tree (Fig. 4) features a set of OD pairs �̃�𝑁𝑆𝑆(𝑘𝑘)

𝑘𝑘  in the top line, and estimate 
values in the bottom line 𝜆𝜆𝑆𝑆

𝑘𝑘 = 𝜆𝜆(𝐺𝐺𝑆𝑆
𝑘𝑘). The numbers on the arcs denote the OD pairs that have been 

added to the set of optimal OD pairs. Moreover, Fig. 4 shows the order of vertices that leads to the 
optimal solution. 
Step zero. In this step, the set of singled out OD pairs contains only those that make up point-to-point 
routes (direct OD pairs). To determine the set of OD pairs �̃�𝑁1 that satisfy condition (3), we compare the 
value of the objective function defined in the set of direct OD pairs N1 with the values of the objective 
function for sets 𝑁𝑁1 ∪ (𝑖𝑖, 𝑗𝑗), where OD pairs (𝑖𝑖, 𝑗𝑗) originate from a set of indirect wagon flows {𝑃𝑃𝑖𝑖𝑖𝑖}. 
We calculate the value of the objective function for set 𝑁𝑁1: 
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branching step, 
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the following way: in accordance with the possibility theory, fuzzy intervals M and N are compared 
using indices of possibility and necessity of fuzzy events. To find those indices, the possibility and 
necessity of fuzzy events are determined [𝑁𝑁, +∞) 𝑎𝑎𝑛𝑛𝑎𝑎 (𝑁𝑁, +∞) for the distribution function 𝜇𝜇𝑚𝑚. 
 
B are possibility measures, and H are necessity measures[4]. 
In the case of (L – R) fuzzy intervals, determining the four indices (4 ÷ 7) leads to finding the points 
of intersection of their membership functions. For instance, if  
𝑀𝑀 = (𝑐𝑐, 𝑐𝑐, 𝛼𝛼, 𝛽𝛽)𝐿𝐿𝐿𝐿 and 𝑁𝑁 = (𝑛𝑛, 𝑛𝑛, 𝛾𝛾, 𝛿𝛿)𝐿𝐿𝐿𝐿, then expressions (4 ÷ 7) take the following form: 
   

It is easy to notice that formulas (8 ÷ 11) are not true when the sum of fuzziness coefficients is 0, i.e. 
when M and N are regular closed intervals. In that case, the zero fuzziness coefficients should be 
replaced with positive coefficients belonging to interval (0,1) so that the membership functions intersect 
at a point whose Y-coordinate lies outside interval [0,1]. Moreover, the following operations are true: 
- if 𝑐𝑐 = 𝑛𝑛, 𝛽𝛽 + 𝛾𝛾 = 0, then, to calculate 𝐵𝐵(𝑋𝑋 ≥ 𝑌𝑌), coefficients 𝛽𝛽, 𝛾𝛾 can be replaced with any positive 
number; 
- if 𝑐𝑐 = 𝑛𝑛, 𝛼𝛼 + 𝛿𝛿 = 0, then, to calculate 𝐻𝐻(𝑋𝑋 > 𝑌𝑌), coefficients 𝛼𝛼, 𝛿𝛿 can be replaced with any positive 
number; 
- if 𝑐𝑐 = 𝑛𝑛, 𝛼𝛼 + 𝛾𝛾 = 0, then 𝐻𝐻(𝑋𝑋 ≥ 𝑌𝑌) = 0; 
- if 𝑐𝑐 = 𝑛𝑛, 𝛽𝛽 + 𝛿𝛿 = 0, then 𝐵𝐵(𝑋𝑋 > 𝑌𝑌) = 0. 
Example [2] 
Determine an optimal railroad blocking plan under relative uncertainty for a railway network region 
shown in Figure 3. 
Figure 3. Region of a railway network 
Fuzzy wagon-hours of accumulation 𝑐𝑐𝑐𝑐𝑖𝑖𝑖𝑖 = (980, 1020, 5, 5), where 𝑖𝑖, 𝑗𝑗 = 1,6. 
Fuzzy wagon flows are shown in Table 1. 
Table 1. Wagon flows 
The savings of wagon-hours for wagons moved without processing have the following fuzzy values: 

𝑡𝑡21 = (3, 5, 1, 1); 𝑡𝑡32 = (2, 4, 1, 1); 𝑡𝑡43 = (2, 4, 1, 1); 𝑡𝑡54 = (3, 5, 1, 1).  
Each vertex of the solution tree (Fig. 4) features a set of OD pairs �̃�𝑁𝑆𝑆(𝑘𝑘)

𝑘𝑘  in the top line, and estimate 
values in the bottom line 𝜆𝜆𝑆𝑆

𝑘𝑘 = 𝜆𝜆(𝐺𝐺𝑆𝑆
𝑘𝑘). The numbers on the arcs denote the OD pairs that have been 

added to the set of optimal OD pairs. Moreover, Fig. 4 shows the order of vertices that leads to the 
optimal solution. 
Step zero. In this step, the set of singled out OD pairs contains only those that make up point-to-point 
routes (direct OD pairs). To determine the set of OD pairs �̃�𝑁1 that satisfy condition (3), we compare the 
value of the objective function defined in the set of direct OD pairs N1 with the values of the objective 
function for sets 𝑁𝑁1 ∪ (𝑖𝑖, 𝑗𝑗), where OD pairs (𝑖𝑖, 𝑗𝑗) originate from a set of indirect wagon flows {𝑃𝑃𝑖𝑖𝑖𝑖}. 
We calculate the value of the objective function for set 𝑁𝑁1: 

 is a set of OD pairs 
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Function (1) will be used later on in this paper to solve a discrete programming problem using the 
branch-and-bound method.  
The estimate of the objective function (1) is: 
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Set 𝑁𝑁𝑆𝑆(𝑘𝑘)

𝑘𝑘  is the set of necessary OD pairs in the k-th step of branching. Set �̃�𝑁𝑆𝑆(𝑘𝑘)
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where ≻ is a preference symbol. 
Each estimate of the objective function (1) is an (L – R) fuzzy interval. The estimates are compared in 
the following way: in accordance with the possibility theory, fuzzy intervals M and N are compared 
using indices of possibility and necessity of fuzzy events. To find those indices, the possibility and 
necessity of fuzzy events are determined [𝑁𝑁, +∞) 𝑎𝑎𝑛𝑛𝑎𝑎 (𝑁𝑁, +∞) for the distribution function 𝜇𝜇𝑚𝑚. 
 
B are possibility measures, and H are necessity measures[4]. 
In the case of (L – R) fuzzy intervals, determining the four indices (4 ÷ 7) leads to finding the points 
of intersection of their membership functions. For instance, if  
𝑀𝑀 = (𝑐𝑐, 𝑐𝑐, 𝛼𝛼, 𝛽𝛽)𝐿𝐿𝐿𝐿 and 𝑁𝑁 = (𝑛𝑛, 𝑛𝑛, 𝛾𝛾, 𝛿𝛿)𝐿𝐿𝐿𝐿, then expressions (4 ÷ 7) take the following form: 
   

It is easy to notice that formulas (8 ÷ 11) are not true when the sum of fuzziness coefficients is 0, i.e. 
when M and N are regular closed intervals. In that case, the zero fuzziness coefficients should be 
replaced with positive coefficients belonging to interval (0,1) so that the membership functions intersect 
at a point whose Y-coordinate lies outside interval [0,1]. Moreover, the following operations are true: 
- if 𝑐𝑐 = 𝑛𝑛, 𝛽𝛽 + 𝛾𝛾 = 0, then, to calculate 𝐵𝐵(𝑋𝑋 ≥ 𝑌𝑌), coefficients 𝛽𝛽, 𝛾𝛾 can be replaced with any positive 
number; 
- if 𝑐𝑐 = 𝑛𝑛, 𝛼𝛼 + 𝛿𝛿 = 0, then, to calculate 𝐻𝐻(𝑋𝑋 > 𝑌𝑌), coefficients 𝛼𝛼, 𝛿𝛿 can be replaced with any positive 
number; 
- if 𝑐𝑐 = 𝑛𝑛, 𝛼𝛼 + 𝛾𝛾 = 0, then 𝐻𝐻(𝑋𝑋 ≥ 𝑌𝑌) = 0; 
- if 𝑐𝑐 = 𝑛𝑛, 𝛽𝛽 + 𝛿𝛿 = 0, then 𝐵𝐵(𝑋𝑋 > 𝑌𝑌) = 0. 
Example [2] 
Determine an optimal railroad blocking plan under relative uncertainty for a railway network region 
shown in Figure 3. 
Figure 3. Region of a railway network 
Fuzzy wagon-hours of accumulation 𝑐𝑐𝑐𝑐𝑖𝑖𝑖𝑖 = (980, 1020, 5, 5), where 𝑖𝑖, 𝑗𝑗 = 1,6. 
Fuzzy wagon flows are shown in Table 1. 
Table 1. Wagon flows 
The savings of wagon-hours for wagons moved without processing have the following fuzzy values: 

𝑡𝑡21 = (3, 5, 1, 1); 𝑡𝑡32 = (2, 4, 1, 1); 𝑡𝑡43 = (2, 4, 1, 1); 𝑡𝑡54 = (3, 5, 1, 1).  
Each vertex of the solution tree (Fig. 4) features a set of OD pairs �̃�𝑁𝑆𝑆(𝑘𝑘)
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𝑘𝑘 = 𝜆𝜆(𝐺𝐺𝑆𝑆
𝑘𝑘). The numbers on the arcs denote the OD pairs that have been 

added to the set of optimal OD pairs. Moreover, Fig. 4 shows the order of vertices that leads to the 
optimal solution. 
Step zero. In this step, the set of singled out OD pairs contains only those that make up point-to-point 
routes (direct OD pairs). To determine the set of OD pairs �̃�𝑁1 that satisfy condition (3), we compare the 
value of the objective function defined in the set of direct OD pairs N1 with the values of the objective 
function for sets 𝑁𝑁1 ∪ (𝑖𝑖, 𝑗𝑗), where OD pairs (𝑖𝑖, 𝑗𝑗) originate from a set of indirect wagon flows {𝑃𝑃𝑖𝑖𝑖𝑖}. 
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Function (1) will be used later on in this paper to solve a discrete programming problem using the 
branch-and-bound method.  
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where ≻ is a preference symbol. 
Each estimate of the objective function (1) is an (L – R) fuzzy interval. The estimates are compared in 
the following way: in accordance with the possibility theory, fuzzy intervals M and N are compared 
using indices of possibility and necessity of fuzzy events. To find those indices, the possibility and 
necessity of fuzzy events are determined [𝑁𝑁, +∞) 𝑎𝑎𝑛𝑛𝑎𝑎 (𝑁𝑁, +∞) for the distribution function 𝜇𝜇𝑚𝑚. 
 
B are possibility measures, and H are necessity measures[4]. 
In the case of (L – R) fuzzy intervals, determining the four indices (4 ÷ 7) leads to finding the points 
of intersection of their membership functions. For instance, if  
𝑀𝑀 = (𝑐𝑐, 𝑐𝑐, 𝛼𝛼, 𝛽𝛽)𝐿𝐿𝐿𝐿 and 𝑁𝑁 = (𝑛𝑛, 𝑛𝑛, 𝛾𝛾, 𝛿𝛿)𝐿𝐿𝐿𝐿, then expressions (4 ÷ 7) take the following form: 
   

It is easy to notice that formulas (8 ÷ 11) are not true when the sum of fuzziness coefficients is 0, i.e. 
when M and N are regular closed intervals. In that case, the zero fuzziness coefficients should be 
replaced with positive coefficients belonging to interval (0,1) so that the membership functions intersect 
at a point whose Y-coordinate lies outside interval [0,1]. Moreover, the following operations are true: 
- if 𝑐𝑐 = 𝑛𝑛, 𝛽𝛽 + 𝛾𝛾 = 0, then, to calculate 𝐵𝐵(𝑋𝑋 ≥ 𝑌𝑌), coefficients 𝛽𝛽, 𝛾𝛾 can be replaced with any positive 
number; 
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- if 𝑐𝑐 = 𝑛𝑛, 𝛽𝛽 + 𝛿𝛿 = 0, then 𝐵𝐵(𝑋𝑋 > 𝑌𝑌) = 0. 
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shown in Figure 3. 
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Fuzzy wagon-hours of accumulation 𝑐𝑐𝑐𝑐𝑖𝑖𝑖𝑖 = (980, 1020, 5, 5), where 𝑖𝑖, 𝑗𝑗 = 1,6. 
Fuzzy wagon flows are shown in Table 1. 
Table 1. Wagon flows 
The savings of wagon-hours for wagons moved without processing have the following fuzzy values: 

𝑡𝑡21 = (3, 5, 1, 1); 𝑡𝑡32 = (2, 4, 1, 1); 𝑡𝑡43 = (2, 4, 1, 1); 𝑡𝑡54 = (3, 5, 1, 1).  
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added to the set of optimal OD pairs. Moreover, Fig. 4 shows the order of vertices that leads to the 
optimal solution. 
Step zero. In this step, the set of singled out OD pairs contains only those that make up point-to-point 
routes (direct OD pairs). To determine the set of OD pairs �̃�𝑁1 that satisfy condition (3), we compare the 
value of the objective function defined in the set of direct OD pairs N1 with the values of the objective 
function for sets 𝑁𝑁1 ∪ (𝑖𝑖, 𝑗𝑗), where OD pairs (𝑖𝑖, 𝑗𝑗) originate from a set of indirect wagon flows {𝑃𝑃𝑖𝑖𝑖𝑖}. 
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Function (1) will be used later on in this paper to solve a discrete programming problem using the 
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where ≻ is a preference symbol. 
Each estimate of the objective function (1) is an (L – R) fuzzy interval. The estimates are compared in 
the following way: in accordance with the possibility theory, fuzzy intervals M and N are compared 
using indices of possibility and necessity of fuzzy events. To find those indices, the possibility and 
necessity of fuzzy events are determined [𝑁𝑁, +∞) 𝑎𝑎𝑛𝑛𝑎𝑎 (𝑁𝑁, +∞) for the distribution function 𝜇𝜇𝑚𝑚. 
 
B are possibility measures, and H are necessity measures[4]. 
In the case of (L – R) fuzzy intervals, determining the four indices (4 ÷ 7) leads to finding the points 
of intersection of their membership functions. For instance, if  
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It is easy to notice that formulas (8 ÷ 11) are not true when the sum of fuzziness coefficients is 0, i.e. 
when M and N are regular closed intervals. In that case, the zero fuzziness coefficients should be 
replaced with positive coefficients belonging to interval (0,1) so that the membership functions intersect 
at a point whose Y-coordinate lies outside interval [0,1]. Moreover, the following operations are true: 
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The savings of wagon-hours for wagons moved without processing have the following fuzzy values: 

𝑡𝑡21 = (3, 5, 1, 1); 𝑡𝑡32 = (2, 4, 1, 1); 𝑡𝑡43 = (2, 4, 1, 1); 𝑡𝑡54 = (3, 5, 1, 1).  
Each vertex of the solution tree (Fig. 4) features a set of OD pairs �̃�𝑁𝑆𝑆(𝑘𝑘)

𝑘𝑘  in the top line, and estimate 
values in the bottom line 𝜆𝜆𝑆𝑆

𝑘𝑘 = 𝜆𝜆(𝐺𝐺𝑆𝑆
𝑘𝑘). The numbers on the arcs denote the OD pairs that have been 

added to the set of optimal OD pairs. Moreover, Fig. 4 shows the order of vertices that leads to the 
optimal solution. 
Step zero. In this step, the set of singled out OD pairs contains only those that make up point-to-point 
routes (direct OD pairs). To determine the set of OD pairs �̃�𝑁1 that satisfy condition (3), we compare the 
value of the objective function defined in the set of direct OD pairs N1 with the values of the objective 
function for sets 𝑁𝑁1 ∪ (𝑖𝑖, 𝑗𝑗), where OD pairs (𝑖𝑖, 𝑗𝑗) originate from a set of indirect wagon flows {𝑃𝑃𝑖𝑖𝑖𝑖}. 
We calculate the value of the objective function for set 𝑁𝑁1: 

 includes any 
OD pair that does not belong to 

 

Function (1) will be used later on in this paper to solve a discrete programming problem using the 
branch-and-bound method.  
The estimate of the objective function (1) is: 
 𝜆𝜆𝑆𝑆

𝑘𝑘 = 𝜆𝜆(𝐺𝐺𝑆𝑆
𝑘𝑘) = ∑(𝑐𝑐𝑐𝑐)𝑖𝑖𝑖𝑖𝑛𝑛𝑖𝑖𝑖𝑖(𝑁𝑁𝑆𝑆(𝑘𝑘)

𝑘𝑘 ) + ∑ 𝑃𝑃𝑖𝑖𝑖𝑖
𝑖𝑖,𝑖𝑖𝑖𝑖,𝑖𝑖

𝑡𝑡𝑖𝑖𝑖𝑖
𝛴𝛴 (𝑁𝑁𝑆𝑆(𝑘𝑘)

𝑘𝑘 ∪ �̃�𝑁𝑆𝑆(𝑘𝑘)
𝑘𝑘 ) (2) 

where 𝐺𝐺𝑆𝑆
𝑘𝑘 is one of the subsets created in the k-th branching step, 𝑁𝑁𝑆𝑆(𝑘𝑘)

𝑘𝑘  is a set of OD pairs included in 
the optimal plan in the k-th step of branching, and �̃�𝑁𝑆𝑆(𝑘𝑘)

𝑘𝑘  is a set of OD pairs analysed in the k-th step of 
branching.  
Set 𝑁𝑁𝑆𝑆(𝑘𝑘)

𝑘𝑘  is the set of necessary OD pairs in the k-th step of branching. Set �̃�𝑁𝑆𝑆(𝑘𝑘)
𝑘𝑘  includes any OD pair 

that does not belong to 𝑁𝑁𝑆𝑆(𝑘𝑘)
𝑘𝑘  and meets the following condition: 

 𝐹𝐹 (𝑁𝑁𝑆𝑆(𝑘𝑘)
𝑘𝑘 ∪ (𝑖𝑖, 𝑗𝑗)) ≻ 𝐹𝐹(𝑁𝑁𝑆𝑆(𝑘𝑘)

𝑘𝑘 ) (3) 

where ≻ is a preference symbol. 
Each estimate of the objective function (1) is an (L – R) fuzzy interval. The estimates are compared in 
the following way: in accordance with the possibility theory, fuzzy intervals M and N are compared 
using indices of possibility and necessity of fuzzy events. To find those indices, the possibility and 
necessity of fuzzy events are determined [𝑁𝑁, +∞) 𝑎𝑎𝑛𝑛𝑎𝑎 (𝑁𝑁, +∞) for the distribution function 𝜇𝜇𝑚𝑚. 
 
B are possibility measures, and H are necessity measures[4]. 
In the case of (L – R) fuzzy intervals, determining the four indices (4 ÷ 7) leads to finding the points 
of intersection of their membership functions. For instance, if  
𝑀𝑀 = (𝑐𝑐, 𝑐𝑐, 𝛼𝛼, 𝛽𝛽)𝐿𝐿𝐿𝐿 and 𝑁𝑁 = (𝑛𝑛, 𝑛𝑛, 𝛾𝛾, 𝛿𝛿)𝐿𝐿𝐿𝐿, then expressions (4 ÷ 7) take the following form: 
   

It is easy to notice that formulas (8 ÷ 11) are not true when the sum of fuzziness coefficients is 0, i.e. 
when M and N are regular closed intervals. In that case, the zero fuzziness coefficients should be 
replaced with positive coefficients belonging to interval (0,1) so that the membership functions intersect 
at a point whose Y-coordinate lies outside interval [0,1]. Moreover, the following operations are true: 
- if 𝑐𝑐 = 𝑛𝑛, 𝛽𝛽 + 𝛾𝛾 = 0, then, to calculate 𝐵𝐵(𝑋𝑋 ≥ 𝑌𝑌), coefficients 𝛽𝛽, 𝛾𝛾 can be replaced with any positive 
number; 
- if 𝑐𝑐 = 𝑛𝑛, 𝛼𝛼 + 𝛿𝛿 = 0, then, to calculate 𝐻𝐻(𝑋𝑋 > 𝑌𝑌), coefficients 𝛼𝛼, 𝛿𝛿 can be replaced with any positive 
number; 
- if 𝑐𝑐 = 𝑛𝑛, 𝛼𝛼 + 𝛾𝛾 = 0, then 𝐻𝐻(𝑋𝑋 ≥ 𝑌𝑌) = 0; 
- if 𝑐𝑐 = 𝑛𝑛, 𝛽𝛽 + 𝛿𝛿 = 0, then 𝐵𝐵(𝑋𝑋 > 𝑌𝑌) = 0. 
Example [2] 
Determine an optimal railroad blocking plan under relative uncertainty for a railway network region 
shown in Figure 3. 
Figure 3. Region of a railway network 
Fuzzy wagon-hours of accumulation 𝑐𝑐𝑐𝑐𝑖𝑖𝑖𝑖 = (980, 1020, 5, 5), where 𝑖𝑖, 𝑗𝑗 = 1,6. 
Fuzzy wagon flows are shown in Table 1. 
Table 1. Wagon flows 
The savings of wagon-hours for wagons moved without processing have the following fuzzy values: 

𝑡𝑡21 = (3, 5, 1, 1); 𝑡𝑡32 = (2, 4, 1, 1); 𝑡𝑡43 = (2, 4, 1, 1); 𝑡𝑡54 = (3, 5, 1, 1).  
Each vertex of the solution tree (Fig. 4) features a set of OD pairs �̃�𝑁𝑆𝑆(𝑘𝑘)

𝑘𝑘  in the top line, and estimate 
values in the bottom line 𝜆𝜆𝑆𝑆

𝑘𝑘 = 𝜆𝜆(𝐺𝐺𝑆𝑆
𝑘𝑘). The numbers on the arcs denote the OD pairs that have been 

added to the set of optimal OD pairs. Moreover, Fig. 4 shows the order of vertices that leads to the 
optimal solution. 
Step zero. In this step, the set of singled out OD pairs contains only those that make up point-to-point 
routes (direct OD pairs). To determine the set of OD pairs �̃�𝑁1 that satisfy condition (3), we compare the 
value of the objective function defined in the set of direct OD pairs N1 with the values of the objective 
function for sets 𝑁𝑁1 ∪ (𝑖𝑖, 𝑗𝑗), where OD pairs (𝑖𝑖, 𝑗𝑗) originate from a set of indirect wagon flows {𝑃𝑃𝑖𝑖𝑖𝑖}. 
We calculate the value of the objective function for set 𝑁𝑁1: 

 and meets 
the following condition:

 

1 
 

𝐿𝐿(0) = 1, and also ∀𝑢𝑢 > 0, 𝐿𝐿(𝑢𝑢) < 1 ∀𝑢𝑢 < 1, 𝐿𝐿(𝑢𝑢) > 0, 
𝐿𝐿 = 0 or 𝐿𝐿(𝑢𝑢) > 0, ∀𝑢𝑢   𝑎𝑎𝑎𝑎𝑎𝑎     𝐿𝐿(+∞) = 0 

𝜇𝜇𝑝𝑝(𝑢𝑢) =

{
 
 
 
 𝐿𝐿 (

𝑚𝑚 − 𝑢𝑢
𝛼𝛼 )  𝑖𝑖𝑖𝑖 𝑢𝑢 ≤ 𝑚𝑚

1 𝑖𝑖𝑖𝑖 𝑚𝑚 ≤ 𝑢𝑢 ≤ 𝑚𝑚

𝑅𝑅 (𝑢𝑢 −𝑚𝑚𝛽𝛽 )  𝑖𝑖𝑖𝑖 𝑢𝑢 ≥ 𝑚𝑚
 

                                                                      𝑇𝑇𝑖𝑖𝑖𝑖 = ∑ 𝑡𝑡𝑖𝑖𝑖𝑖𝑖𝑖∈𝑀𝑀𝑖𝑖𝑖𝑖
𝑖𝑖≠𝑖𝑖

; 

 𝐹𝐹(𝑎𝑎𝑖𝑖𝑖𝑖) =∑((𝑐𝑐𝑚𝑚)𝑖𝑖𝑖𝑖𝑎𝑎𝑖𝑖𝑖𝑖 + 𝑃𝑃𝑖𝑖𝑖𝑖𝑡𝑡𝑖𝑖𝑖𝑖𝛴𝛴 (𝑎𝑎𝑖𝑖𝑖𝑖)) → min
{𝑛𝑛𝑖𝑖𝑖𝑖}

  (1) 

 

𝑎𝑎𝑖𝑖𝑖𝑖 = {1 if OD pair (𝑖𝑖, 𝑗𝑗) exists0 otherwise  

 

 𝜆𝜆𝑆𝑆𝑘𝑘 = 𝜆𝜆(𝐺𝐺𝑆𝑆𝑘𝑘) =∑(𝑐𝑐𝑚𝑚)𝑖𝑖𝑖𝑖𝑎𝑎𝑖𝑖𝑖𝑖(𝑁𝑁𝑆𝑆(𝑘𝑘)𝑘𝑘 ) +∑𝑃𝑃𝑖𝑖𝑖𝑖
𝑖𝑖,𝑖𝑖𝑖𝑖,𝑖𝑖

𝑡𝑡𝑖𝑖𝑖𝑖𝛴𝛴 (𝑁𝑁𝑆𝑆(𝑘𝑘)𝑘𝑘 ∪ �̃�𝑁𝑆𝑆(𝑘𝑘)𝑘𝑘 ) (2) 

 

 𝐹𝐹 (𝑁𝑁𝑆𝑆(𝑘𝑘)𝑘𝑘 ∪ (𝑖𝑖, 𝑗𝑗)) ≻ 𝐹𝐹(𝑁𝑁𝑆𝑆(𝑘𝑘)𝑘𝑘 ) (3) 

 

1). 𝐵𝐵𝑀𝑀([𝑁𝑁,+∞)) = 𝐵𝐵(𝑋𝑋 ≥ 𝑌𝑌) = 𝑠𝑠𝑢𝑢𝑠𝑠
𝑢𝑢
𝑚𝑚𝑖𝑖𝑎𝑎
 (𝜇𝜇𝑀𝑀(𝑢𝑢),

𝑠𝑠𝑢𝑢𝑠𝑠
𝑣𝑣 ≤ 𝑢𝑢(𝑣𝑣)) =

= 𝑠𝑠𝑢𝑢𝑠𝑠
𝑢𝑢 ≥ 𝑣𝑣

𝑚𝑚𝑖𝑖𝑎𝑎
 (𝜇𝜇𝑀𝑀(𝑢𝑢), 𝜇𝜇𝑁𝑁(𝑣𝑣))   

(4) 

 

2). 𝐵𝐵𝑀𝑀((𝑁𝑁,+∞)) = 𝐵𝐵(𝑋𝑋 > 𝑌𝑌) = 𝑠𝑠𝑢𝑢𝑠𝑠𝑢𝑢
𝑚𝑚𝑖𝑖𝑎𝑎
 (𝜇𝜇𝑀𝑀(𝑢𝑢), 𝑖𝑖𝑎𝑎𝑖𝑖(1 − 𝜇𝜇𝑁𝑁(𝑣𝑣))) =

= 𝑠𝑠𝑢𝑢𝑠𝑠𝑢𝑢
𝑖𝑖𝑎𝑎𝑖𝑖
𝑣𝑣 > 𝑢𝑢

𝑚𝑚𝑖𝑖𝑎𝑎
 (𝜇𝜇𝑀𝑀(𝑢𝑢), 𝜇𝜇𝑁𝑁(𝑣𝑣))   

(5) 

 

3). 𝐻𝐻𝑀𝑀([𝑁𝑁,+∞)) = 𝐻𝐻(𝑋𝑋 ≥ 𝑌𝑌) = 𝑖𝑖𝑎𝑎𝑖𝑖𝑢𝑢
𝑚𝑚𝑎𝑎𝑚𝑚
 (1 − 𝜇𝜇𝑀𝑀(𝑢𝑢),

𝑠𝑠𝑢𝑢𝑠𝑠
𝑣𝑣 ≤ 𝑢𝑢𝜇𝜇𝑁𝑁(𝑣𝑣)) =

= 𝑖𝑖𝑎𝑎𝑖𝑖𝑢𝑢
𝑠𝑠𝑢𝑢𝑠𝑠
𝑢𝑢 ≤ 𝑣𝑣

𝑚𝑚𝑎𝑎𝑚𝑚
 (1 − 𝜇𝜇𝑀𝑀(𝑢𝑢), 𝜇𝜇𝑁𝑁(𝑣𝑣))   

(6) 

 

4). 𝐻𝐻𝑀𝑀((𝑁𝑁, +∞)) = 𝐻𝐻(𝑋𝑋 > 𝑌𝑌) = 𝑖𝑖𝑎𝑎𝑖𝑖𝑢𝑢
𝑚𝑚𝑎𝑎𝑚𝑚
 (1 − 𝜇𝜇𝑀𝑀(𝑢𝑢), 𝑖𝑖𝑎𝑎𝑖𝑖(1 − 𝜇𝜇𝑁𝑁(𝑣𝑣))) =

= 1 − 𝑠𝑠𝑢𝑢𝑠𝑠
𝑢𝑢 ≤ 𝑣𝑣

𝑚𝑚𝑖𝑖𝑎𝑎
 (𝜇𝜇𝑀𝑀(𝑢𝑢), 𝜇𝜇𝑁𝑁(𝑣𝑣))   

(7) 

 

 

 (3)

where: 

1 
 

𝐿𝐿(0) = 1, and also ∀𝑢𝑢 > 0, 𝐿𝐿(𝑢𝑢) < 1 ∀𝑢𝑢 < 1, 𝐿𝐿(𝑢𝑢) > 0, 
𝐿𝐿 = 0 or 𝐿𝐿(𝑢𝑢) > 0, ∀𝑢𝑢   𝑎𝑎𝑎𝑎𝑎𝑎     𝐿𝐿(+∞) = 0 

𝜇𝜇𝑝𝑝(𝑢𝑢) =

{
 
 
 
 𝐿𝐿 (

𝑚𝑚 − 𝑢𝑢
𝛼𝛼 )  𝑖𝑖𝑖𝑖 𝑢𝑢 ≤ 𝑚𝑚

1 𝑖𝑖𝑖𝑖 𝑚𝑚 ≤ 𝑢𝑢 ≤ 𝑚𝑚

𝑅𝑅 (𝑢𝑢 −𝑚𝑚𝛽𝛽 )  𝑖𝑖𝑖𝑖 𝑢𝑢 ≥ 𝑚𝑚
 

                                                                      𝑇𝑇𝑖𝑖𝑖𝑖 = ∑ 𝑡𝑡𝑖𝑖𝑖𝑖𝑖𝑖∈𝑀𝑀𝑖𝑖𝑖𝑖
𝑖𝑖≠𝑖𝑖

; 

 𝐹𝐹(𝑎𝑎𝑖𝑖𝑖𝑖) =∑((𝑐𝑐𝑚𝑚)𝑖𝑖𝑖𝑖𝑎𝑎𝑖𝑖𝑖𝑖 + 𝑃𝑃𝑖𝑖𝑖𝑖𝑡𝑡𝑖𝑖𝑖𝑖𝛴𝛴 (𝑎𝑎𝑖𝑖𝑖𝑖)) → min
{𝑛𝑛𝑖𝑖𝑖𝑖}

  (1) 

 

𝑎𝑎𝑖𝑖𝑖𝑖 = {1 if OD pair (𝑖𝑖, 𝑗𝑗) exists0 otherwise  

 

 𝜆𝜆𝑆𝑆𝑘𝑘 = 𝜆𝜆(𝐺𝐺𝑆𝑆𝑘𝑘) =∑(𝑐𝑐𝑚𝑚)𝑖𝑖𝑖𝑖𝑎𝑎𝑖𝑖𝑖𝑖(𝑁𝑁𝑆𝑆(𝑘𝑘)𝑘𝑘 ) +∑𝑃𝑃𝑖𝑖𝑖𝑖
𝑖𝑖,𝑖𝑖𝑖𝑖,𝑖𝑖

𝑡𝑡𝑖𝑖𝑖𝑖𝛴𝛴 (𝑁𝑁𝑆𝑆(𝑘𝑘)𝑘𝑘 ∪ �̃�𝑁𝑆𝑆(𝑘𝑘)𝑘𝑘 ) (2) 

 

 𝐹𝐹 (𝑁𝑁𝑆𝑆(𝑘𝑘)𝑘𝑘 ∪ (𝑖𝑖, 𝑗𝑗)) ≻ 𝐹𝐹(𝑁𝑁𝑆𝑆(𝑘𝑘)𝑘𝑘 ) (3) 

 

1). 𝐵𝐵𝑀𝑀([𝑁𝑁,+∞)) = 𝐵𝐵(𝑋𝑋 ≥ 𝑌𝑌) = 𝑠𝑠𝑢𝑢𝑠𝑠
𝑢𝑢
𝑚𝑚𝑖𝑖𝑎𝑎
 (𝜇𝜇𝑀𝑀(𝑢𝑢),

𝑠𝑠𝑢𝑢𝑠𝑠
𝑣𝑣 ≤ 𝑢𝑢(𝑣𝑣)) =

= 𝑠𝑠𝑢𝑢𝑠𝑠
𝑢𝑢 ≥ 𝑣𝑣

𝑚𝑚𝑖𝑖𝑎𝑎
 (𝜇𝜇𝑀𝑀(𝑢𝑢), 𝜇𝜇𝑁𝑁(𝑣𝑣))   

(4) 

 

2). 𝐵𝐵𝑀𝑀((𝑁𝑁,+∞)) = 𝐵𝐵(𝑋𝑋 > 𝑌𝑌) = 𝑠𝑠𝑢𝑢𝑠𝑠𝑢𝑢
𝑚𝑚𝑖𝑖𝑎𝑎
 (𝜇𝜇𝑀𝑀(𝑢𝑢), 𝑖𝑖𝑎𝑎𝑖𝑖(1 − 𝜇𝜇𝑁𝑁(𝑣𝑣))) =

= 𝑠𝑠𝑢𝑢𝑠𝑠𝑢𝑢
𝑖𝑖𝑎𝑎𝑖𝑖
𝑣𝑣 > 𝑢𝑢

𝑚𝑚𝑖𝑖𝑎𝑎
 (𝜇𝜇𝑀𝑀(𝑢𝑢), 𝜇𝜇𝑁𝑁(𝑣𝑣))   

(5) 

 

3). 𝐻𝐻𝑀𝑀([𝑁𝑁,+∞)) = 𝐻𝐻(𝑋𝑋 ≥ 𝑌𝑌) = 𝑖𝑖𝑎𝑎𝑖𝑖𝑢𝑢
𝑚𝑚𝑎𝑎𝑚𝑚
 (1 − 𝜇𝜇𝑀𝑀(𝑢𝑢),

𝑠𝑠𝑢𝑢𝑠𝑠
𝑣𝑣 ≤ 𝑢𝑢𝜇𝜇𝑁𝑁(𝑣𝑣)) =

= 𝑖𝑖𝑎𝑎𝑖𝑖𝑢𝑢
𝑠𝑠𝑢𝑢𝑠𝑠
𝑢𝑢 ≤ 𝑣𝑣

𝑚𝑚𝑎𝑎𝑚𝑚
 (1 − 𝜇𝜇𝑀𝑀(𝑢𝑢), 𝜇𝜇𝑁𝑁(𝑣𝑣))   

(6) 

 

4). 𝐻𝐻𝑀𝑀((𝑁𝑁, +∞)) = 𝐻𝐻(𝑋𝑋 > 𝑌𝑌) = 𝑖𝑖𝑎𝑎𝑖𝑖𝑢𝑢
𝑚𝑚𝑎𝑎𝑚𝑚
 (1 − 𝜇𝜇𝑀𝑀(𝑢𝑢), 𝑖𝑖𝑎𝑎𝑖𝑖(1 − 𝜇𝜇𝑁𝑁(𝑣𝑣))) =

= 1 − 𝑠𝑠𝑢𝑢𝑠𝑠
𝑢𝑢 ≤ 𝑣𝑣

𝑚𝑚𝑖𝑖𝑎𝑎
 (𝜇𝜇𝑀𝑀(𝑢𝑢), 𝜇𝜇𝑁𝑁(𝑣𝑣))   

(7) 

 

 

 is a preference symbol.

Each estimate of the objective function (1) is an 
(L – R) fuzzy interval. The estimates are compared 
in the following way: in accordance with the possi-
bility theory, fuzzy intervals M and N are compared 
using indices of possibility and necessity of fuzzy 
events. To find those indices, the possibility and ne-
cessity of fuzzy events are determined (N,+∞) and 
(N,+∞) for the distribution function μm.

This gives us four dominance indices:

1 
 

𝐿𝐿(0) = 1, and also ∀𝑢𝑢 > 0, 𝐿𝐿(𝑢𝑢) < 1 ∀𝑢𝑢 < 1, 𝐿𝐿(𝑢𝑢) > 0, 
𝐿𝐿 = 0 or 𝐿𝐿(𝑢𝑢) > 0, ∀𝑢𝑢   𝑎𝑎𝑎𝑎𝑎𝑎     𝐿𝐿(+∞) = 0 

𝜇𝜇𝑝𝑝(𝑢𝑢) =

{
 
 
 
 𝐿𝐿 (

𝑚𝑚 − 𝑢𝑢
𝛼𝛼 )  𝑖𝑖𝑖𝑖 𝑢𝑢 ≤ 𝑚𝑚

1 𝑖𝑖𝑖𝑖 𝑚𝑚 ≤ 𝑢𝑢 ≤ 𝑚𝑚

𝑅𝑅 (𝑢𝑢 −𝑚𝑚𝛽𝛽 )  𝑖𝑖𝑖𝑖 𝑢𝑢 ≥ 𝑚𝑚
 

                                                                      𝑇𝑇𝑖𝑖𝑖𝑖 = ∑ 𝑡𝑡𝑖𝑖𝑖𝑖𝑖𝑖∈𝑀𝑀𝑖𝑖𝑖𝑖
𝑖𝑖≠𝑖𝑖

; 

 𝐹𝐹(𝑎𝑎𝑖𝑖𝑖𝑖) =∑((𝑐𝑐𝑚𝑚)𝑖𝑖𝑖𝑖𝑎𝑎𝑖𝑖𝑖𝑖 + 𝑃𝑃𝑖𝑖𝑖𝑖𝑡𝑡𝑖𝑖𝑖𝑖𝛴𝛴 (𝑎𝑎𝑖𝑖𝑖𝑖)) → min
{𝑛𝑛𝑖𝑖𝑖𝑖}

  (1) 

 

𝑎𝑎𝑖𝑖𝑖𝑖 = {1 if OD pair (𝑖𝑖, 𝑗𝑗) exists0 otherwise  

 

 𝜆𝜆𝑆𝑆𝑘𝑘 = 𝜆𝜆(𝐺𝐺𝑆𝑆𝑘𝑘) =∑(𝑐𝑐𝑚𝑚)𝑖𝑖𝑖𝑖𝑎𝑎𝑖𝑖𝑖𝑖(𝑁𝑁𝑆𝑆(𝑘𝑘)𝑘𝑘 ) +∑𝑃𝑃𝑖𝑖𝑖𝑖
𝑖𝑖,𝑖𝑖𝑖𝑖,𝑖𝑖

𝑡𝑡𝑖𝑖𝑖𝑖𝛴𝛴 (𝑁𝑁𝑆𝑆(𝑘𝑘)𝑘𝑘 ∪ �̃�𝑁𝑆𝑆(𝑘𝑘)𝑘𝑘 ) (2) 

 

 𝐹𝐹 (𝑁𝑁𝑆𝑆(𝑘𝑘)𝑘𝑘 ∪ (𝑖𝑖, 𝑗𝑗)) ≻ 𝐹𝐹(𝑁𝑁𝑆𝑆(𝑘𝑘)𝑘𝑘 ) (3) 

 

1). 𝐵𝐵𝑀𝑀([𝑁𝑁,+∞)) = 𝐵𝐵(𝑋𝑋 ≥ 𝑌𝑌) = 𝑠𝑠𝑢𝑢𝑠𝑠
𝑢𝑢
𝑚𝑚𝑖𝑖𝑎𝑎
 (𝜇𝜇𝑀𝑀(𝑢𝑢),

𝑠𝑠𝑢𝑢𝑠𝑠
𝑣𝑣 ≤ 𝑢𝑢(𝑣𝑣)) =

= 𝑠𝑠𝑢𝑢𝑠𝑠
𝑢𝑢 ≥ 𝑣𝑣

𝑚𝑚𝑖𝑖𝑎𝑎
 (𝜇𝜇𝑀𝑀(𝑢𝑢), 𝜇𝜇𝑁𝑁(𝑣𝑣))   

(4) 

 

2). 𝐵𝐵𝑀𝑀((𝑁𝑁,+∞)) = 𝐵𝐵(𝑋𝑋 > 𝑌𝑌) = 𝑠𝑠𝑢𝑢𝑠𝑠𝑢𝑢
𝑚𝑚𝑖𝑖𝑎𝑎
 (𝜇𝜇𝑀𝑀(𝑢𝑢), 𝑖𝑖𝑎𝑎𝑖𝑖(1 − 𝜇𝜇𝑁𝑁(𝑣𝑣))) =

= 𝑠𝑠𝑢𝑢𝑠𝑠𝑢𝑢
𝑖𝑖𝑎𝑎𝑖𝑖
𝑣𝑣 > 𝑢𝑢

𝑚𝑚𝑖𝑖𝑎𝑎
 (𝜇𝜇𝑀𝑀(𝑢𝑢), 𝜇𝜇𝑁𝑁(𝑣𝑣))   

(5) 

 

3). 𝐻𝐻𝑀𝑀([𝑁𝑁,+∞)) = 𝐻𝐻(𝑋𝑋 ≥ 𝑌𝑌) = 𝑖𝑖𝑎𝑎𝑖𝑖𝑢𝑢
𝑚𝑚𝑎𝑎𝑚𝑚
 (1 − 𝜇𝜇𝑀𝑀(𝑢𝑢),

𝑠𝑠𝑢𝑢𝑠𝑠
𝑣𝑣 ≤ 𝑢𝑢𝜇𝜇𝑁𝑁(𝑣𝑣)) =

= 𝑖𝑖𝑎𝑎𝑖𝑖𝑢𝑢
𝑠𝑠𝑢𝑢𝑠𝑠
𝑢𝑢 ≤ 𝑣𝑣

𝑚𝑚𝑎𝑎𝑚𝑚
 (1 − 𝜇𝜇𝑀𝑀(𝑢𝑢), 𝜇𝜇𝑁𝑁(𝑣𝑣))   

(6) 

 

4). 𝐻𝐻𝑀𝑀((𝑁𝑁, +∞)) = 𝐻𝐻(𝑋𝑋 > 𝑌𝑌) = 𝑖𝑖𝑎𝑎𝑖𝑖𝑢𝑢
𝑚𝑚𝑎𝑎𝑚𝑚
 (1 − 𝜇𝜇𝑀𝑀(𝑢𝑢), 𝑖𝑖𝑎𝑎𝑖𝑖(1 − 𝜇𝜇𝑁𝑁(𝑣𝑣))) =

= 1 − 𝑠𝑠𝑢𝑢𝑠𝑠
𝑢𝑢 ≤ 𝑣𝑣

𝑚𝑚𝑖𝑖𝑎𝑎
 (𝜇𝜇𝑀𝑀(𝑢𝑢), 𝜇𝜇𝑁𝑁(𝑣𝑣))   

(7) 

 

 

1 
 

𝐿𝐿(0) = 1, and also ∀𝑢𝑢 > 0, 𝐿𝐿(𝑢𝑢) < 1 ∀𝑢𝑢 < 1, 𝐿𝐿(𝑢𝑢) > 0, 
𝐿𝐿 = 0 or 𝐿𝐿(𝑢𝑢) > 0, ∀𝑢𝑢   𝑎𝑎𝑎𝑎𝑎𝑎     𝐿𝐿(+∞) = 0 

𝜇𝜇𝑝𝑝(𝑢𝑢) =

{
 
 
 
 𝐿𝐿 (

𝑚𝑚 − 𝑢𝑢
𝛼𝛼 )  𝑖𝑖𝑖𝑖 𝑢𝑢 ≤ 𝑚𝑚

1 𝑖𝑖𝑖𝑖 𝑚𝑚 ≤ 𝑢𝑢 ≤ 𝑚𝑚

𝑅𝑅 (𝑢𝑢 −𝑚𝑚𝛽𝛽 )  𝑖𝑖𝑖𝑖 𝑢𝑢 ≥ 𝑚𝑚
 

                                                                      𝑇𝑇𝑖𝑖𝑖𝑖 = ∑ 𝑡𝑡𝑖𝑖𝑖𝑖𝑖𝑖∈𝑀𝑀𝑖𝑖𝑖𝑖
𝑖𝑖≠𝑖𝑖

; 

 𝐹𝐹(𝑎𝑎𝑖𝑖𝑖𝑖) =∑((𝑐𝑐𝑚𝑚)𝑖𝑖𝑖𝑖𝑎𝑎𝑖𝑖𝑖𝑖 + 𝑃𝑃𝑖𝑖𝑖𝑖𝑡𝑡𝑖𝑖𝑖𝑖𝛴𝛴 (𝑎𝑎𝑖𝑖𝑖𝑖)) → min
{𝑛𝑛𝑖𝑖𝑖𝑖}

  (1) 

 

𝑎𝑎𝑖𝑖𝑖𝑖 = {1 if OD pair (𝑖𝑖, 𝑗𝑗) exists0 otherwise  

 

 𝜆𝜆𝑆𝑆𝑘𝑘 = 𝜆𝜆(𝐺𝐺𝑆𝑆𝑘𝑘) =∑(𝑐𝑐𝑚𝑚)𝑖𝑖𝑖𝑖𝑎𝑎𝑖𝑖𝑖𝑖(𝑁𝑁𝑆𝑆(𝑘𝑘)𝑘𝑘 ) +∑𝑃𝑃𝑖𝑖𝑖𝑖
𝑖𝑖,𝑖𝑖𝑖𝑖,𝑖𝑖

𝑡𝑡𝑖𝑖𝑖𝑖𝛴𝛴 (𝑁𝑁𝑆𝑆(𝑘𝑘)𝑘𝑘 ∪ �̃�𝑁𝑆𝑆(𝑘𝑘)𝑘𝑘 ) (2) 

 

 𝐹𝐹 (𝑁𝑁𝑆𝑆(𝑘𝑘)𝑘𝑘 ∪ (𝑖𝑖, 𝑗𝑗)) ≻ 𝐹𝐹(𝑁𝑁𝑆𝑆(𝑘𝑘)𝑘𝑘 ) (3) 

 

1). 𝐵𝐵𝑀𝑀([𝑁𝑁,+∞)) = 𝐵𝐵(𝑋𝑋 ≥ 𝑌𝑌) = 𝑠𝑠𝑢𝑢𝑠𝑠
𝑢𝑢
𝑚𝑚𝑖𝑖𝑎𝑎
 (𝜇𝜇𝑀𝑀(𝑢𝑢),

𝑠𝑠𝑢𝑢𝑠𝑠
𝑣𝑣 ≤ 𝑢𝑢(𝑣𝑣)) =

= 𝑠𝑠𝑢𝑢𝑠𝑠
𝑢𝑢 ≥ 𝑣𝑣

𝑚𝑚𝑖𝑖𝑎𝑎
 (𝜇𝜇𝑀𝑀(𝑢𝑢), 𝜇𝜇𝑁𝑁(𝑣𝑣))   

(4) 

 

2). 𝐵𝐵𝑀𝑀((𝑁𝑁,+∞)) = 𝐵𝐵(𝑋𝑋 > 𝑌𝑌) = 𝑠𝑠𝑢𝑢𝑠𝑠𝑢𝑢
𝑚𝑚𝑖𝑖𝑎𝑎
 (𝜇𝜇𝑀𝑀(𝑢𝑢), 𝑖𝑖𝑎𝑎𝑖𝑖(1 − 𝜇𝜇𝑁𝑁(𝑣𝑣))) =

= 𝑠𝑠𝑢𝑢𝑠𝑠𝑢𝑢
𝑖𝑖𝑎𝑎𝑖𝑖
𝑣𝑣 > 𝑢𝑢

𝑚𝑚𝑖𝑖𝑎𝑎
 (𝜇𝜇𝑀𝑀(𝑢𝑢), 𝜇𝜇𝑁𝑁(𝑣𝑣))   

(5) 

 

3). 𝐻𝐻𝑀𝑀([𝑁𝑁,+∞)) = 𝐻𝐻(𝑋𝑋 ≥ 𝑌𝑌) = 𝑖𝑖𝑎𝑎𝑖𝑖𝑢𝑢
𝑚𝑚𝑎𝑎𝑚𝑚
 (1 − 𝜇𝜇𝑀𝑀(𝑢𝑢),

𝑠𝑠𝑢𝑢𝑠𝑠
𝑣𝑣 ≤ 𝑢𝑢𝜇𝜇𝑁𝑁(𝑣𝑣)) =

= 𝑖𝑖𝑎𝑎𝑖𝑖𝑢𝑢
𝑠𝑠𝑢𝑢𝑠𝑠
𝑢𝑢 ≤ 𝑣𝑣

𝑚𝑚𝑎𝑎𝑚𝑚
 (1 − 𝜇𝜇𝑀𝑀(𝑢𝑢), 𝜇𝜇𝑁𝑁(𝑣𝑣))   

(6) 

 

4). 𝐻𝐻𝑀𝑀((𝑁𝑁, +∞)) = 𝐻𝐻(𝑋𝑋 > 𝑌𝑌) = 𝑖𝑖𝑎𝑎𝑖𝑖𝑢𝑢
𝑚𝑚𝑎𝑎𝑚𝑚
 (1 − 𝜇𝜇𝑀𝑀(𝑢𝑢), 𝑖𝑖𝑎𝑎𝑖𝑖(1 − 𝜇𝜇𝑁𝑁(𝑣𝑣))) =

= 1 − 𝑠𝑠𝑢𝑢𝑠𝑠
𝑢𝑢 ≤ 𝑣𝑣

𝑚𝑚𝑖𝑖𝑎𝑎
 (𝜇𝜇𝑀𝑀(𝑢𝑢), 𝜇𝜇𝑁𝑁(𝑣𝑣))   

(7) 

 

 

1 
 

𝐿𝐿(0) = 1, and also ∀𝑢𝑢 > 0, 𝐿𝐿(𝑢𝑢) < 1 ∀𝑢𝑢 < 1, 𝐿𝐿(𝑢𝑢) > 0, 
𝐿𝐿 = 0 or 𝐿𝐿(𝑢𝑢) > 0, ∀𝑢𝑢   𝑎𝑎𝑎𝑎𝑎𝑎     𝐿𝐿(+∞) = 0 

𝜇𝜇𝑝𝑝(𝑢𝑢) =

{
 
 
 
 𝐿𝐿 (

𝑚𝑚 − 𝑢𝑢
𝛼𝛼 )  𝑖𝑖𝑖𝑖 𝑢𝑢 ≤ 𝑚𝑚

1 𝑖𝑖𝑖𝑖 𝑚𝑚 ≤ 𝑢𝑢 ≤ 𝑚𝑚

𝑅𝑅 (𝑢𝑢 −𝑚𝑚𝛽𝛽 )  𝑖𝑖𝑖𝑖 𝑢𝑢 ≥ 𝑚𝑚
 

                                                                      𝑇𝑇𝑖𝑖𝑖𝑖 = ∑ 𝑡𝑡𝑖𝑖𝑖𝑖𝑖𝑖∈𝑀𝑀𝑖𝑖𝑖𝑖
𝑖𝑖≠𝑖𝑖

; 

 𝐹𝐹(𝑎𝑎𝑖𝑖𝑖𝑖) =∑((𝑐𝑐𝑚𝑚)𝑖𝑖𝑖𝑖𝑎𝑎𝑖𝑖𝑖𝑖 + 𝑃𝑃𝑖𝑖𝑖𝑖𝑡𝑡𝑖𝑖𝑖𝑖𝛴𝛴 (𝑎𝑎𝑖𝑖𝑖𝑖)) → min
{𝑛𝑛𝑖𝑖𝑖𝑖}

  (1) 

 

𝑎𝑎𝑖𝑖𝑖𝑖 = {1 if OD pair (𝑖𝑖, 𝑗𝑗) exists0 otherwise  

 

 𝜆𝜆𝑆𝑆𝑘𝑘 = 𝜆𝜆(𝐺𝐺𝑆𝑆𝑘𝑘) =∑(𝑐𝑐𝑚𝑚)𝑖𝑖𝑖𝑖𝑎𝑎𝑖𝑖𝑖𝑖(𝑁𝑁𝑆𝑆(𝑘𝑘)𝑘𝑘 ) +∑𝑃𝑃𝑖𝑖𝑖𝑖
𝑖𝑖,𝑖𝑖𝑖𝑖,𝑖𝑖

𝑡𝑡𝑖𝑖𝑖𝑖𝛴𝛴 (𝑁𝑁𝑆𝑆(𝑘𝑘)𝑘𝑘 ∪ �̃�𝑁𝑆𝑆(𝑘𝑘)𝑘𝑘 ) (2) 

 

 𝐹𝐹 (𝑁𝑁𝑆𝑆(𝑘𝑘)𝑘𝑘 ∪ (𝑖𝑖, 𝑗𝑗)) ≻ 𝐹𝐹(𝑁𝑁𝑆𝑆(𝑘𝑘)𝑘𝑘 ) (3) 

 

1). 𝐵𝐵𝑀𝑀([𝑁𝑁,+∞)) = 𝐵𝐵(𝑋𝑋 ≥ 𝑌𝑌) = 𝑠𝑠𝑢𝑢𝑠𝑠
𝑢𝑢
𝑚𝑚𝑖𝑖𝑎𝑎
 (𝜇𝜇𝑀𝑀(𝑢𝑢),

𝑠𝑠𝑢𝑢𝑠𝑠
𝑣𝑣 ≤ 𝑢𝑢(𝑣𝑣)) =

= 𝑠𝑠𝑢𝑢𝑠𝑠
𝑢𝑢 ≥ 𝑣𝑣

𝑚𝑚𝑖𝑖𝑎𝑎
 (𝜇𝜇𝑀𝑀(𝑢𝑢), 𝜇𝜇𝑁𝑁(𝑣𝑣))   

(4) 

 

2). 𝐵𝐵𝑀𝑀((𝑁𝑁,+∞)) = 𝐵𝐵(𝑋𝑋 > 𝑌𝑌) = 𝑠𝑠𝑢𝑢𝑠𝑠𝑢𝑢
𝑚𝑚𝑖𝑖𝑎𝑎
 (𝜇𝜇𝑀𝑀(𝑢𝑢), 𝑖𝑖𝑎𝑎𝑖𝑖(1 − 𝜇𝜇𝑁𝑁(𝑣𝑣))) =

= 𝑠𝑠𝑢𝑢𝑠𝑠𝑢𝑢
𝑖𝑖𝑎𝑎𝑖𝑖
𝑣𝑣 > 𝑢𝑢

𝑚𝑚𝑖𝑖𝑎𝑎
 (𝜇𝜇𝑀𝑀(𝑢𝑢), 𝜇𝜇𝑁𝑁(𝑣𝑣))   

(5) 

 

3). 𝐻𝐻𝑀𝑀([𝑁𝑁,+∞)) = 𝐻𝐻(𝑋𝑋 ≥ 𝑌𝑌) = 𝑖𝑖𝑎𝑎𝑖𝑖𝑢𝑢
𝑚𝑚𝑎𝑎𝑚𝑚
 (1 − 𝜇𝜇𝑀𝑀(𝑢𝑢),

𝑠𝑠𝑢𝑢𝑠𝑠
𝑣𝑣 ≤ 𝑢𝑢𝜇𝜇𝑁𝑁(𝑣𝑣)) =

= 𝑖𝑖𝑎𝑎𝑖𝑖𝑢𝑢
𝑠𝑠𝑢𝑢𝑠𝑠
𝑢𝑢 ≤ 𝑣𝑣

𝑚𝑚𝑎𝑎𝑚𝑚
 (1 − 𝜇𝜇𝑀𝑀(𝑢𝑢), 𝜇𝜇𝑁𝑁(𝑣𝑣))   
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4). 𝐻𝐻𝑀𝑀((𝑁𝑁, +∞)) = 𝐻𝐻(𝑋𝑋 > 𝑌𝑌) = 𝑖𝑖𝑎𝑎𝑖𝑖𝑢𝑢
𝑚𝑚𝑎𝑎𝑚𝑚
 (1 − 𝜇𝜇𝑀𝑀(𝑢𝑢), 𝑖𝑖𝑎𝑎𝑖𝑖(1 − 𝜇𝜇𝑁𝑁(𝑣𝑣))) =

= 1 − 𝑠𝑠𝑢𝑢𝑠𝑠
𝑢𝑢 ≤ 𝑣𝑣

𝑚𝑚𝑖𝑖𝑎𝑎
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 𝐹𝐹 (𝑁𝑁𝑆𝑆(𝑘𝑘)𝑘𝑘 ∪ (𝑖𝑖, 𝑗𝑗)) ≻ 𝐹𝐹(𝑁𝑁𝑆𝑆(𝑘𝑘)𝑘𝑘 ) (3) 
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2). 𝐵𝐵𝑀𝑀((𝑁𝑁,+∞)) = 𝐵𝐵(𝑋𝑋 > 𝑌𝑌) = 𝑠𝑠𝑢𝑢𝑠𝑠𝑢𝑢
𝑚𝑚𝑖𝑖𝑎𝑎
 (𝜇𝜇𝑀𝑀(𝑢𝑢), 𝑖𝑖𝑎𝑎𝑖𝑖(1 − 𝜇𝜇𝑁𝑁(𝑣𝑣))) =

= 𝑠𝑠𝑢𝑢𝑠𝑠𝑢𝑢
𝑖𝑖𝑎𝑎𝑖𝑖
𝑣𝑣 > 𝑢𝑢

𝑚𝑚𝑖𝑖𝑎𝑎
 (𝜇𝜇𝑀𝑀(𝑢𝑢), 𝜇𝜇𝑁𝑁(𝑣𝑣))   
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 (𝜇𝜇𝑀𝑀(𝑢𝑢), 𝜇𝜇𝑁𝑁(𝑣𝑣))   

(7) 

 

 

 

1 
 

𝐿𝐿(0) = 1, and also ∀𝑢𝑢 > 0, 𝐿𝐿(𝑢𝑢) < 1 ∀𝑢𝑢 < 1, 𝐿𝐿(𝑢𝑢) > 0, 
𝐿𝐿 = 0 or 𝐿𝐿(𝑢𝑢) > 0, ∀𝑢𝑢   𝑎𝑎𝑎𝑎𝑎𝑎     𝐿𝐿(+∞) = 0 

𝜇𝜇𝑝𝑝(𝑢𝑢) =

{
 
 
 
 𝐿𝐿 (

𝑚𝑚 − 𝑢𝑢
𝛼𝛼 )  𝑖𝑖𝑖𝑖 𝑢𝑢 ≤ 𝑚𝑚

1 𝑖𝑖𝑖𝑖 𝑚𝑚 ≤ 𝑢𝑢 ≤ 𝑚𝑚

𝑅𝑅 (𝑢𝑢 −𝑚𝑚𝛽𝛽 )  𝑖𝑖𝑖𝑖 𝑢𝑢 ≥ 𝑚𝑚
 

                                                                      𝑇𝑇𝑖𝑖𝑖𝑖 = ∑ 𝑡𝑡𝑖𝑖𝑖𝑖𝑖𝑖∈𝑀𝑀𝑖𝑖𝑖𝑖
𝑖𝑖≠𝑖𝑖

; 
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𝑎𝑎𝑖𝑖𝑖𝑖 = {1 if OD pair (𝑖𝑖, 𝑗𝑗) exists0 otherwise  
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 𝐹𝐹 (𝑁𝑁𝑆𝑆(𝑘𝑘)𝑘𝑘 ∪ (𝑖𝑖, 𝑗𝑗)) ≻ 𝐹𝐹(𝑁𝑁𝑆𝑆(𝑘𝑘)𝑘𝑘 ) (3) 

 

1). 𝐵𝐵𝑀𝑀([𝑁𝑁,+∞)) = 𝐵𝐵(𝑋𝑋 ≥ 𝑌𝑌) = 𝑠𝑠𝑢𝑢𝑠𝑠
𝑢𝑢
𝑚𝑚𝑖𝑖𝑎𝑎
 (𝜇𝜇𝑀𝑀(𝑢𝑢),

𝑠𝑠𝑢𝑢𝑠𝑠
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𝑢𝑢 ≥ 𝑣𝑣

𝑚𝑚𝑖𝑖𝑎𝑎
 (𝜇𝜇𝑀𝑀(𝑢𝑢), 𝜇𝜇𝑁𝑁(𝑣𝑣))   
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𝑚𝑚𝑖𝑖𝑎𝑎
 (𝜇𝜇𝑀𝑀(𝑢𝑢), 𝑖𝑖𝑎𝑎𝑖𝑖(1 − 𝜇𝜇𝑁𝑁(𝑣𝑣))) =

= 𝑠𝑠𝑢𝑢𝑠𝑠𝑢𝑢
𝑖𝑖𝑎𝑎𝑖𝑖
𝑣𝑣 > 𝑢𝑢

𝑚𝑚𝑖𝑖𝑎𝑎
 (𝜇𝜇𝑀𝑀(𝑢𝑢), 𝜇𝜇𝑁𝑁(𝑣𝑣))   
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3). 𝐻𝐻𝑀𝑀([𝑁𝑁,+∞)) = 𝐻𝐻(𝑋𝑋 ≥ 𝑌𝑌) = 𝑖𝑖𝑎𝑎𝑖𝑖𝑢𝑢
𝑚𝑚𝑎𝑎𝑚𝑚
 (1 − 𝜇𝜇𝑀𝑀(𝑢𝑢),

𝑠𝑠𝑢𝑢𝑠𝑠
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= 𝑖𝑖𝑎𝑎𝑖𝑖𝑢𝑢
𝑠𝑠𝑢𝑢𝑠𝑠
𝑢𝑢 ≤ 𝑣𝑣
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{𝑛𝑛𝑖𝑖𝑖𝑖}

  (1) 

 

𝑎𝑎𝑖𝑖𝑖𝑖 = {1 if OD pair (𝑖𝑖, 𝑗𝑗) exists0 otherwise  
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3). 𝐻𝐻𝑀𝑀([𝑁𝑁,+∞)) = 𝐻𝐻(𝑋𝑋 ≥ 𝑌𝑌) = 𝑖𝑖𝑎𝑎𝑖𝑖𝑢𝑢
𝑚𝑚𝑎𝑎𝑚𝑚
 (1 − 𝜇𝜇𝑀𝑀(𝑢𝑢),

𝑠𝑠𝑢𝑢𝑠𝑠
𝑣𝑣 ≤ 𝑢𝑢𝜇𝜇𝑁𝑁(𝑣𝑣)) =

= 𝑖𝑖𝑎𝑎𝑖𝑖𝑢𝑢
𝑠𝑠𝑢𝑢𝑠𝑠
𝑢𝑢 ≤ 𝑣𝑣

𝑚𝑚𝑎𝑎𝑚𝑚
 (1 − 𝜇𝜇𝑀𝑀(𝑢𝑢), 𝜇𝜇𝑁𝑁(𝑣𝑣))   

(6) 

 

4). 𝐻𝐻𝑀𝑀((𝑁𝑁, +∞)) = 𝐻𝐻(𝑋𝑋 > 𝑌𝑌) = 𝑖𝑖𝑎𝑎𝑖𝑖𝑢𝑢
𝑚𝑚𝑎𝑎𝑚𝑚
 (1 − 𝜇𝜇𝑀𝑀(𝑢𝑢), 𝑖𝑖𝑎𝑎𝑖𝑖(1 − 𝜇𝜇𝑁𝑁(𝑣𝑣))) =

= 1 − 𝑠𝑠𝑢𝑢𝑠𝑠
𝑢𝑢 ≤ 𝑣𝑣

𝑚𝑚𝑖𝑖𝑎𝑎
 (𝜇𝜇𝑀𝑀(𝑢𝑢), 𝜇𝜇𝑁𝑁(𝑣𝑣))   

(7) 

 

 

– possibility that interval M is larger than Ni

 

1 
 

𝐿𝐿(0) = 1, and also ∀𝑢𝑢 > 0, 𝐿𝐿(𝑢𝑢) < 1 ∀𝑢𝑢 < 1, 𝐿𝐿(𝑢𝑢) > 0, 
𝐿𝐿 = 0 or 𝐿𝐿(𝑢𝑢) > 0, ∀𝑢𝑢   𝑎𝑎𝑎𝑎𝑎𝑎     𝐿𝐿(+∞) = 0 

𝜇𝜇𝑝𝑝(𝑢𝑢) =

{
 
 
 
 𝐿𝐿 (

𝑚𝑚 − 𝑢𝑢
𝛼𝛼 )  𝑖𝑖𝑖𝑖 𝑢𝑢 ≤ 𝑚𝑚

1 𝑖𝑖𝑖𝑖 𝑚𝑚 ≤ 𝑢𝑢 ≤ 𝑚𝑚

𝑅𝑅 (𝑢𝑢 −𝑚𝑚𝛽𝛽 )  𝑖𝑖𝑖𝑖 𝑢𝑢 ≥ 𝑚𝑚
 

                                                                      𝑇𝑇𝑖𝑖𝑖𝑖 = ∑ 𝑡𝑡𝑖𝑖𝑖𝑖𝑖𝑖∈𝑀𝑀𝑖𝑖𝑖𝑖
𝑖𝑖≠𝑖𝑖

; 

 𝐹𝐹(𝑎𝑎𝑖𝑖𝑖𝑖) =∑((𝑐𝑐𝑚𝑚)𝑖𝑖𝑖𝑖𝑎𝑎𝑖𝑖𝑖𝑖 + 𝑃𝑃𝑖𝑖𝑖𝑖𝑡𝑡𝑖𝑖𝑖𝑖𝛴𝛴 (𝑎𝑎𝑖𝑖𝑖𝑖)) → min
{𝑛𝑛𝑖𝑖𝑖𝑖}

  (1) 

 

𝑎𝑎𝑖𝑖𝑖𝑖 = {1 if OD pair (𝑖𝑖, 𝑗𝑗) exists0 otherwise  

 

 𝜆𝜆𝑆𝑆𝑘𝑘 = 𝜆𝜆(𝐺𝐺𝑆𝑆𝑘𝑘) =∑(𝑐𝑐𝑚𝑚)𝑖𝑖𝑖𝑖𝑎𝑎𝑖𝑖𝑖𝑖(𝑁𝑁𝑆𝑆(𝑘𝑘)𝑘𝑘 ) +∑𝑃𝑃𝑖𝑖𝑖𝑖
𝑖𝑖,𝑖𝑖𝑖𝑖,𝑖𝑖

𝑡𝑡𝑖𝑖𝑖𝑖𝛴𝛴 (𝑁𝑁𝑆𝑆(𝑘𝑘)𝑘𝑘 ∪ �̃�𝑁𝑆𝑆(𝑘𝑘)𝑘𝑘 ) (2) 

 

 𝐹𝐹 (𝑁𝑁𝑆𝑆(𝑘𝑘)𝑘𝑘 ∪ (𝑖𝑖, 𝑗𝑗)) ≻ 𝐹𝐹(𝑁𝑁𝑆𝑆(𝑘𝑘)𝑘𝑘 ) (3) 

 

1). 𝐵𝐵𝑀𝑀([𝑁𝑁,+∞)) = 𝐵𝐵(𝑋𝑋 ≥ 𝑌𝑌) = 𝑠𝑠𝑢𝑢𝑠𝑠
𝑢𝑢
𝑚𝑚𝑖𝑖𝑎𝑎
 (𝜇𝜇𝑀𝑀(𝑢𝑢),

𝑠𝑠𝑢𝑢𝑠𝑠
𝑣𝑣 ≤ 𝑢𝑢(𝑣𝑣)) =

= 𝑠𝑠𝑢𝑢𝑠𝑠
𝑢𝑢 ≥ 𝑣𝑣

𝑚𝑚𝑖𝑖𝑎𝑎
 (𝜇𝜇𝑀𝑀(𝑢𝑢), 𝜇𝜇𝑁𝑁(𝑣𝑣))   

(4) 

 

2). 𝐵𝐵𝑀𝑀((𝑁𝑁,+∞)) = 𝐵𝐵(𝑋𝑋 > 𝑌𝑌) = 𝑠𝑠𝑢𝑢𝑠𝑠𝑢𝑢
𝑚𝑚𝑖𝑖𝑎𝑎
 (𝜇𝜇𝑀𝑀(𝑢𝑢), 𝑖𝑖𝑎𝑎𝑖𝑖(1 − 𝜇𝜇𝑁𝑁(𝑣𝑣))) =

= 𝑠𝑠𝑢𝑢𝑠𝑠𝑢𝑢
𝑖𝑖𝑎𝑎𝑖𝑖
𝑣𝑣 > 𝑢𝑢

𝑚𝑚𝑖𝑖𝑎𝑎
 (𝜇𝜇𝑀𝑀(𝑢𝑢), 𝜇𝜇𝑁𝑁(𝑣𝑣))   

(5) 

 

3). 𝐻𝐻𝑀𝑀([𝑁𝑁,+∞)) = 𝐻𝐻(𝑋𝑋 ≥ 𝑌𝑌) = 𝑖𝑖𝑎𝑎𝑖𝑖𝑢𝑢
𝑚𝑚𝑎𝑎𝑚𝑚
 (1 − 𝜇𝜇𝑀𝑀(𝑢𝑢),

𝑠𝑠𝑢𝑢𝑠𝑠
𝑣𝑣 ≤ 𝑢𝑢𝜇𝜇𝑁𝑁(𝑣𝑣)) =

= 𝑖𝑖𝑎𝑎𝑖𝑖𝑢𝑢
𝑠𝑠𝑢𝑢𝑠𝑠
𝑢𝑢 ≤ 𝑣𝑣

𝑚𝑚𝑎𝑎𝑚𝑚
 (1 − 𝜇𝜇𝑀𝑀(𝑢𝑢), 𝜇𝜇𝑁𝑁(𝑣𝑣))   

(6) 

 

4). 𝐻𝐻𝑀𝑀((𝑁𝑁, +∞)) = 𝐻𝐻(𝑋𝑋 > 𝑌𝑌) = 𝑖𝑖𝑎𝑎𝑖𝑖𝑢𝑢
𝑚𝑚𝑎𝑎𝑚𝑚
 (1 − 𝜇𝜇𝑀𝑀(𝑢𝑢), 𝑖𝑖𝑎𝑎𝑖𝑖(1 − 𝜇𝜇𝑁𝑁(𝑣𝑣))) =

= 1 − 𝑠𝑠𝑢𝑢𝑠𝑠
𝑢𝑢 ≤ 𝑣𝑣

𝑚𝑚𝑖𝑖𝑎𝑎
 (𝜇𝜇𝑀𝑀(𝑢𝑢), 𝜇𝜇𝑁𝑁(𝑣𝑣))   

(7) 

 

 

1 
 

𝐿𝐿(0) = 1, and also ∀𝑢𝑢 > 0, 𝐿𝐿(𝑢𝑢) < 1 ∀𝑢𝑢 < 1, 𝐿𝐿(𝑢𝑢) > 0, 
𝐿𝐿 = 0 or 𝐿𝐿(𝑢𝑢) > 0, ∀𝑢𝑢   𝑎𝑎𝑎𝑎𝑎𝑎     𝐿𝐿(+∞) = 0 

𝜇𝜇𝑝𝑝(𝑢𝑢) =

{
 
 
 
 𝐿𝐿 (

𝑚𝑚 − 𝑢𝑢
𝛼𝛼 )  𝑖𝑖𝑖𝑖 𝑢𝑢 ≤ 𝑚𝑚

1 𝑖𝑖𝑖𝑖 𝑚𝑚 ≤ 𝑢𝑢 ≤ 𝑚𝑚

𝑅𝑅 (𝑢𝑢 −𝑚𝑚𝛽𝛽 )  𝑖𝑖𝑖𝑖 𝑢𝑢 ≥ 𝑚𝑚
 

                                                                      𝑇𝑇𝑖𝑖𝑖𝑖 = ∑ 𝑡𝑡𝑖𝑖𝑖𝑖𝑖𝑖∈𝑀𝑀𝑖𝑖𝑖𝑖
𝑖𝑖≠𝑖𝑖

; 

 𝐹𝐹(𝑎𝑎𝑖𝑖𝑖𝑖) =∑((𝑐𝑐𝑚𝑚)𝑖𝑖𝑖𝑖𝑎𝑎𝑖𝑖𝑖𝑖 + 𝑃𝑃𝑖𝑖𝑖𝑖𝑡𝑡𝑖𝑖𝑖𝑖𝛴𝛴 (𝑎𝑎𝑖𝑖𝑖𝑖)) → min
{𝑛𝑛𝑖𝑖𝑖𝑖}

  (1) 

 

𝑎𝑎𝑖𝑖𝑖𝑖 = {1 if OD pair (𝑖𝑖, 𝑗𝑗) exists0 otherwise  

 

 𝜆𝜆𝑆𝑆𝑘𝑘 = 𝜆𝜆(𝐺𝐺𝑆𝑆𝑘𝑘) =∑(𝑐𝑐𝑚𝑚)𝑖𝑖𝑖𝑖𝑎𝑎𝑖𝑖𝑖𝑖(𝑁𝑁𝑆𝑆(𝑘𝑘)𝑘𝑘 ) +∑𝑃𝑃𝑖𝑖𝑖𝑖
𝑖𝑖,𝑖𝑖𝑖𝑖,𝑖𝑖

𝑡𝑡𝑖𝑖𝑖𝑖𝛴𝛴 (𝑁𝑁𝑆𝑆(𝑘𝑘)𝑘𝑘 ∪ �̃�𝑁𝑆𝑆(𝑘𝑘)𝑘𝑘 ) (2) 

 

 𝐹𝐹 (𝑁𝑁𝑆𝑆(𝑘𝑘)𝑘𝑘 ∪ (𝑖𝑖, 𝑗𝑗)) ≻ 𝐹𝐹(𝑁𝑁𝑆𝑆(𝑘𝑘)𝑘𝑘 ) (3) 

 

1). 𝐵𝐵𝑀𝑀([𝑁𝑁,+∞)) = 𝐵𝐵(𝑋𝑋 ≥ 𝑌𝑌) = 𝑠𝑠𝑢𝑢𝑠𝑠
𝑢𝑢
𝑚𝑚𝑖𝑖𝑎𝑎
 (𝜇𝜇𝑀𝑀(𝑢𝑢),

𝑠𝑠𝑢𝑢𝑠𝑠
𝑣𝑣 ≤ 𝑢𝑢(𝑣𝑣)) =

= 𝑠𝑠𝑢𝑢𝑠𝑠
𝑢𝑢 ≥ 𝑣𝑣

𝑚𝑚𝑖𝑖𝑎𝑎
 (𝜇𝜇𝑀𝑀(𝑢𝑢), 𝜇𝜇𝑁𝑁(𝑣𝑣))   

(4) 

 

2). 𝐵𝐵𝑀𝑀((𝑁𝑁,+∞)) = 𝐵𝐵(𝑋𝑋 > 𝑌𝑌) = 𝑠𝑠𝑢𝑢𝑠𝑠𝑢𝑢
𝑚𝑚𝑖𝑖𝑎𝑎
 (𝜇𝜇𝑀𝑀(𝑢𝑢), 𝑖𝑖𝑎𝑎𝑖𝑖(1 − 𝜇𝜇𝑁𝑁(𝑣𝑣))) =

= 𝑠𝑠𝑢𝑢𝑠𝑠𝑢𝑢
𝑖𝑖𝑎𝑎𝑖𝑖
𝑣𝑣 > 𝑢𝑢

𝑚𝑚𝑖𝑖𝑎𝑎
 (𝜇𝜇𝑀𝑀(𝑢𝑢), 𝜇𝜇𝑁𝑁(𝑣𝑣))   

(5) 

 

3). 𝐻𝐻𝑀𝑀([𝑁𝑁,+∞)) = 𝐻𝐻(𝑋𝑋 ≥ 𝑌𝑌) = 𝑖𝑖𝑎𝑎𝑖𝑖𝑢𝑢
𝑚𝑚𝑎𝑎𝑚𝑚
 (1 − 𝜇𝜇𝑀𝑀(𝑢𝑢),

𝑠𝑠𝑢𝑢𝑠𝑠
𝑣𝑣 ≤ 𝑢𝑢𝜇𝜇𝑁𝑁(𝑣𝑣)) =

= 𝑖𝑖𝑎𝑎𝑖𝑖𝑢𝑢
𝑠𝑠𝑢𝑢𝑠𝑠
𝑢𝑢 ≤ 𝑣𝑣

𝑚𝑚𝑎𝑎𝑚𝑚
 (1 − 𝜇𝜇𝑀𝑀(𝑢𝑢), 𝜇𝜇𝑁𝑁(𝑣𝑣))   

(6) 

 

4). 𝐻𝐻𝑀𝑀((𝑁𝑁, +∞)) = 𝐻𝐻(𝑋𝑋 > 𝑌𝑌) = 𝑖𝑖𝑎𝑎𝑖𝑖𝑢𝑢
𝑚𝑚𝑎𝑎𝑚𝑚
 (1 − 𝜇𝜇𝑀𝑀(𝑢𝑢), 𝑖𝑖𝑎𝑎𝑖𝑖(1 − 𝜇𝜇𝑁𝑁(𝑣𝑣))) =

= 1 − 𝑠𝑠𝑢𝑢𝑠𝑠
𝑢𝑢 ≤ 𝑣𝑣

𝑚𝑚𝑖𝑖𝑎𝑎
 (𝜇𝜇𝑀𝑀(𝑢𝑢), 𝜇𝜇𝑁𝑁(𝑣𝑣))   

(7) 

 

 

1 
 

𝐿𝐿(0) = 1, and also ∀𝑢𝑢 > 0, 𝐿𝐿(𝑢𝑢) < 1 ∀𝑢𝑢 < 1, 𝐿𝐿(𝑢𝑢) > 0, 
𝐿𝐿 = 0 or 𝐿𝐿(𝑢𝑢) > 0, ∀𝑢𝑢   𝑎𝑎𝑎𝑎𝑎𝑎     𝐿𝐿(+∞) = 0 

𝜇𝜇𝑝𝑝(𝑢𝑢) =

{
 
 
 
 𝐿𝐿 (

𝑚𝑚 − 𝑢𝑢
𝛼𝛼 )  𝑖𝑖𝑖𝑖 𝑢𝑢 ≤ 𝑚𝑚

1 𝑖𝑖𝑖𝑖 𝑚𝑚 ≤ 𝑢𝑢 ≤ 𝑚𝑚

𝑅𝑅 (𝑢𝑢 −𝑚𝑚𝛽𝛽 )  𝑖𝑖𝑖𝑖 𝑢𝑢 ≥ 𝑚𝑚
 

                                                                      𝑇𝑇𝑖𝑖𝑖𝑖 = ∑ 𝑡𝑡𝑖𝑖𝑖𝑖𝑖𝑖∈𝑀𝑀𝑖𝑖𝑖𝑖
𝑖𝑖≠𝑖𝑖

; 

 𝐹𝐹(𝑎𝑎𝑖𝑖𝑖𝑖) =∑((𝑐𝑐𝑚𝑚)𝑖𝑖𝑖𝑖𝑎𝑎𝑖𝑖𝑖𝑖 + 𝑃𝑃𝑖𝑖𝑖𝑖𝑡𝑡𝑖𝑖𝑖𝑖𝛴𝛴 (𝑎𝑎𝑖𝑖𝑖𝑖)) → min
{𝑛𝑛𝑖𝑖𝑖𝑖}

  (1) 

 

𝑎𝑎𝑖𝑖𝑖𝑖 = {1 if OD pair (𝑖𝑖, 𝑗𝑗) exists0 otherwise  

 

 𝜆𝜆𝑆𝑆𝑘𝑘 = 𝜆𝜆(𝐺𝐺𝑆𝑆𝑘𝑘) =∑(𝑐𝑐𝑚𝑚)𝑖𝑖𝑖𝑖𝑎𝑎𝑖𝑖𝑖𝑖(𝑁𝑁𝑆𝑆(𝑘𝑘)𝑘𝑘 ) +∑𝑃𝑃𝑖𝑖𝑖𝑖
𝑖𝑖,𝑖𝑖𝑖𝑖,𝑖𝑖

𝑡𝑡𝑖𝑖𝑖𝑖𝛴𝛴 (𝑁𝑁𝑆𝑆(𝑘𝑘)𝑘𝑘 ∪ �̃�𝑁𝑆𝑆(𝑘𝑘)𝑘𝑘 ) (2) 

 

 𝐹𝐹 (𝑁𝑁𝑆𝑆(𝑘𝑘)𝑘𝑘 ∪ (𝑖𝑖, 𝑗𝑗)) ≻ 𝐹𝐹(𝑁𝑁𝑆𝑆(𝑘𝑘)𝑘𝑘 ) (3) 

 

1). 𝐵𝐵𝑀𝑀([𝑁𝑁,+∞)) = 𝐵𝐵(𝑋𝑋 ≥ 𝑌𝑌) = 𝑠𝑠𝑢𝑢𝑠𝑠
𝑢𝑢
𝑚𝑚𝑖𝑖𝑎𝑎
 (𝜇𝜇𝑀𝑀(𝑢𝑢),

𝑠𝑠𝑢𝑢𝑠𝑠
𝑣𝑣 ≤ 𝑢𝑢(𝑣𝑣)) =

= 𝑠𝑠𝑢𝑢𝑠𝑠
𝑢𝑢 ≥ 𝑣𝑣

𝑚𝑚𝑖𝑖𝑎𝑎
 (𝜇𝜇𝑀𝑀(𝑢𝑢), 𝜇𝜇𝑁𝑁(𝑣𝑣))   

(4) 

 

2). 𝐵𝐵𝑀𝑀((𝑁𝑁,+∞)) = 𝐵𝐵(𝑋𝑋 > 𝑌𝑌) = 𝑠𝑠𝑢𝑢𝑠𝑠𝑢𝑢
𝑚𝑚𝑖𝑖𝑎𝑎
 (𝜇𝜇𝑀𝑀(𝑢𝑢), 𝑖𝑖𝑎𝑎𝑖𝑖(1 − 𝜇𝜇𝑁𝑁(𝑣𝑣))) =

= 𝑠𝑠𝑢𝑢𝑠𝑠𝑢𝑢
𝑖𝑖𝑎𝑎𝑖𝑖
𝑣𝑣 > 𝑢𝑢

𝑚𝑚𝑖𝑖𝑎𝑎
 (𝜇𝜇𝑀𝑀(𝑢𝑢), 𝜇𝜇𝑁𝑁(𝑣𝑣))   

(5) 

 

3). 𝐻𝐻𝑀𝑀([𝑁𝑁,+∞)) = 𝐻𝐻(𝑋𝑋 ≥ 𝑌𝑌) = 𝑖𝑖𝑎𝑎𝑖𝑖𝑢𝑢
𝑚𝑚𝑎𝑎𝑚𝑚
 (1 − 𝜇𝜇𝑀𝑀(𝑢𝑢),

𝑠𝑠𝑢𝑢𝑠𝑠
𝑣𝑣 ≤ 𝑢𝑢𝜇𝜇𝑁𝑁(𝑣𝑣)) =

= 𝑖𝑖𝑎𝑎𝑖𝑖𝑢𝑢
𝑠𝑠𝑢𝑢𝑠𝑠
𝑢𝑢 ≤ 𝑣𝑣

𝑚𝑚𝑎𝑎𝑚𝑚
 (1 − 𝜇𝜇𝑀𝑀(𝑢𝑢), 𝜇𝜇𝑁𝑁(𝑣𝑣))   

(6) 

 

4). 𝐻𝐻𝑀𝑀((𝑁𝑁, +∞)) = 𝐻𝐻(𝑋𝑋 > 𝑌𝑌) = 𝑖𝑖𝑎𝑎𝑖𝑖𝑢𝑢
𝑚𝑚𝑎𝑎𝑚𝑚
 (1 − 𝜇𝜇𝑀𝑀(𝑢𝑢), 𝑖𝑖𝑎𝑎𝑖𝑖(1 − 𝜇𝜇𝑁𝑁(𝑣𝑣))) =

= 1 − 𝑠𝑠𝑢𝑢𝑠𝑠
𝑢𝑢 ≤ 𝑣𝑣

𝑚𝑚𝑖𝑖𝑎𝑎
 (𝜇𝜇𝑀𝑀(𝑢𝑢), 𝜇𝜇𝑁𝑁(𝑣𝑣))   

(7) 

 

 

– necessity that interval M is not smaller than Ni

 

1 
 

𝐿𝐿(0) = 1, and also ∀𝑢𝑢 > 0, 𝐿𝐿(𝑢𝑢) < 1 ∀𝑢𝑢 < 1, 𝐿𝐿(𝑢𝑢) > 0, 
𝐿𝐿 = 0 or 𝐿𝐿(𝑢𝑢) > 0, ∀𝑢𝑢   𝑎𝑎𝑎𝑎𝑎𝑎     𝐿𝐿(+∞) = 0 

𝜇𝜇𝑝𝑝(𝑢𝑢) =

{
 
 
 
 𝐿𝐿 (

𝑚𝑚 − 𝑢𝑢
𝛼𝛼 )  𝑖𝑖𝑖𝑖 𝑢𝑢 ≤ 𝑚𝑚

1 𝑖𝑖𝑖𝑖 𝑚𝑚 ≤ 𝑢𝑢 ≤ 𝑚𝑚

𝑅𝑅 (𝑢𝑢 −𝑚𝑚𝛽𝛽 )  𝑖𝑖𝑖𝑖 𝑢𝑢 ≥ 𝑚𝑚
 

                                                                      𝑇𝑇𝑖𝑖𝑖𝑖 = ∑ 𝑡𝑡𝑖𝑖𝑖𝑖𝑖𝑖∈𝑀𝑀𝑖𝑖𝑖𝑖
𝑖𝑖≠𝑖𝑖

; 

 𝐹𝐹(𝑎𝑎𝑖𝑖𝑖𝑖) =∑((𝑐𝑐𝑚𝑚)𝑖𝑖𝑖𝑖𝑎𝑎𝑖𝑖𝑖𝑖 + 𝑃𝑃𝑖𝑖𝑖𝑖𝑡𝑡𝑖𝑖𝑖𝑖𝛴𝛴 (𝑎𝑎𝑖𝑖𝑖𝑖)) → min
{𝑛𝑛𝑖𝑖𝑖𝑖}

  (1) 

 

𝑎𝑎𝑖𝑖𝑖𝑖 = {1 if OD pair (𝑖𝑖, 𝑗𝑗) exists0 otherwise  

 

 𝜆𝜆𝑆𝑆𝑘𝑘 = 𝜆𝜆(𝐺𝐺𝑆𝑆𝑘𝑘) =∑(𝑐𝑐𝑚𝑚)𝑖𝑖𝑖𝑖𝑎𝑎𝑖𝑖𝑖𝑖(𝑁𝑁𝑆𝑆(𝑘𝑘)𝑘𝑘 ) +∑𝑃𝑃𝑖𝑖𝑖𝑖
𝑖𝑖,𝑖𝑖𝑖𝑖,𝑖𝑖

𝑡𝑡𝑖𝑖𝑖𝑖𝛴𝛴 (𝑁𝑁𝑆𝑆(𝑘𝑘)𝑘𝑘 ∪ �̃�𝑁𝑆𝑆(𝑘𝑘)𝑘𝑘 ) (2) 

 

 𝐹𝐹 (𝑁𝑁𝑆𝑆(𝑘𝑘)𝑘𝑘 ∪ (𝑖𝑖, 𝑗𝑗)) ≻ 𝐹𝐹(𝑁𝑁𝑆𝑆(𝑘𝑘)𝑘𝑘 ) (3) 

 

1). 𝐵𝐵𝑀𝑀([𝑁𝑁,+∞)) = 𝐵𝐵(𝑋𝑋 ≥ 𝑌𝑌) = 𝑠𝑠𝑢𝑢𝑠𝑠
𝑢𝑢
𝑚𝑚𝑖𝑖𝑎𝑎
 (𝜇𝜇𝑀𝑀(𝑢𝑢),

𝑠𝑠𝑢𝑢𝑠𝑠
𝑣𝑣 ≤ 𝑢𝑢(𝑣𝑣)) =

= 𝑠𝑠𝑢𝑢𝑠𝑠
𝑢𝑢 ≥ 𝑣𝑣

𝑚𝑚𝑖𝑖𝑎𝑎
 (𝜇𝜇𝑀𝑀(𝑢𝑢), 𝜇𝜇𝑁𝑁(𝑣𝑣))   

(4) 

 

2). 𝐵𝐵𝑀𝑀((𝑁𝑁,+∞)) = 𝐵𝐵(𝑋𝑋 > 𝑌𝑌) = 𝑠𝑠𝑢𝑢𝑠𝑠𝑢𝑢
𝑚𝑚𝑖𝑖𝑎𝑎
 (𝜇𝜇𝑀𝑀(𝑢𝑢), 𝑖𝑖𝑎𝑎𝑖𝑖(1 − 𝜇𝜇𝑁𝑁(𝑣𝑣))) =

= 𝑠𝑠𝑢𝑢𝑠𝑠𝑢𝑢
𝑖𝑖𝑎𝑎𝑖𝑖
𝑣𝑣 > 𝑢𝑢

𝑚𝑚𝑖𝑖𝑎𝑎
 (𝜇𝜇𝑀𝑀(𝑢𝑢), 𝜇𝜇𝑁𝑁(𝑣𝑣))   

(5) 

 

3). 𝐻𝐻𝑀𝑀([𝑁𝑁,+∞)) = 𝐻𝐻(𝑋𝑋 ≥ 𝑌𝑌) = 𝑖𝑖𝑎𝑎𝑖𝑖𝑢𝑢
𝑚𝑚𝑎𝑎𝑚𝑚
 (1 − 𝜇𝜇𝑀𝑀(𝑢𝑢),

𝑠𝑠𝑢𝑢𝑠𝑠
𝑣𝑣 ≤ 𝑢𝑢𝜇𝜇𝑁𝑁(𝑣𝑣)) =

= 𝑖𝑖𝑎𝑎𝑖𝑖𝑢𝑢
𝑠𝑠𝑢𝑢𝑠𝑠
𝑢𝑢 ≤ 𝑣𝑣

𝑚𝑚𝑎𝑎𝑚𝑚
 (1 − 𝜇𝜇𝑀𝑀(𝑢𝑢), 𝜇𝜇𝑁𝑁(𝑣𝑣))   

(6) 

 

4). 𝐻𝐻𝑀𝑀((𝑁𝑁, +∞)) = 𝐻𝐻(𝑋𝑋 > 𝑌𝑌) = 𝑖𝑖𝑎𝑎𝑖𝑖𝑢𝑢
𝑚𝑚𝑎𝑎𝑚𝑚
 (1 − 𝜇𝜇𝑀𝑀(𝑢𝑢), 𝑖𝑖𝑎𝑎𝑖𝑖(1 − 𝜇𝜇𝑁𝑁(𝑣𝑣))) =

= 1 − 𝑠𝑠𝑢𝑢𝑠𝑠
𝑢𝑢 ≤ 𝑣𝑣

𝑚𝑚𝑖𝑖𝑎𝑎
 (𝜇𝜇𝑀𝑀(𝑢𝑢), 𝜇𝜇𝑁𝑁(𝑣𝑣))   

(7) 

 

 

       

1 
 

𝐿𝐿(0) = 1, and also ∀𝑢𝑢 > 0, 𝐿𝐿(𝑢𝑢) < 1 ∀𝑢𝑢 < 1, 𝐿𝐿(𝑢𝑢) > 0, 
𝐿𝐿 = 0 or 𝐿𝐿(𝑢𝑢) > 0, ∀𝑢𝑢   𝑎𝑎𝑎𝑎𝑎𝑎     𝐿𝐿(+∞) = 0 

𝜇𝜇𝑝𝑝(𝑢𝑢) =

{
 
 
 
 𝐿𝐿 (

𝑚𝑚 − 𝑢𝑢
𝛼𝛼 )  𝑖𝑖𝑖𝑖 𝑢𝑢 ≤ 𝑚𝑚

1 𝑖𝑖𝑖𝑖 𝑚𝑚 ≤ 𝑢𝑢 ≤ 𝑚𝑚

𝑅𝑅 (𝑢𝑢 −𝑚𝑚𝛽𝛽 )  𝑖𝑖𝑖𝑖 𝑢𝑢 ≥ 𝑚𝑚
 

                                                                      𝑇𝑇𝑖𝑖𝑖𝑖 = ∑ 𝑡𝑡𝑖𝑖𝑖𝑖𝑖𝑖∈𝑀𝑀𝑖𝑖𝑖𝑖
𝑖𝑖≠𝑖𝑖

; 

 𝐹𝐹(𝑎𝑎𝑖𝑖𝑖𝑖) =∑((𝑐𝑐𝑚𝑚)𝑖𝑖𝑖𝑖𝑎𝑎𝑖𝑖𝑖𝑖 + 𝑃𝑃𝑖𝑖𝑖𝑖𝑡𝑡𝑖𝑖𝑖𝑖𝛴𝛴 (𝑎𝑎𝑖𝑖𝑖𝑖)) → min
{𝑛𝑛𝑖𝑖𝑖𝑖}

  (1) 

 

𝑎𝑎𝑖𝑖𝑖𝑖 = {1 if OD pair (𝑖𝑖, 𝑗𝑗) exists0 otherwise  

 

 𝜆𝜆𝑆𝑆𝑘𝑘 = 𝜆𝜆(𝐺𝐺𝑆𝑆𝑘𝑘) =∑(𝑐𝑐𝑚𝑚)𝑖𝑖𝑖𝑖𝑎𝑎𝑖𝑖𝑖𝑖(𝑁𝑁𝑆𝑆(𝑘𝑘)𝑘𝑘 ) +∑𝑃𝑃𝑖𝑖𝑖𝑖
𝑖𝑖,𝑖𝑖𝑖𝑖,𝑖𝑖

𝑡𝑡𝑖𝑖𝑖𝑖𝛴𝛴 (𝑁𝑁𝑆𝑆(𝑘𝑘)𝑘𝑘 ∪ �̃�𝑁𝑆𝑆(𝑘𝑘)𝑘𝑘 ) (2) 

 

 𝐹𝐹 (𝑁𝑁𝑆𝑆(𝑘𝑘)𝑘𝑘 ∪ (𝑖𝑖, 𝑗𝑗)) ≻ 𝐹𝐹(𝑁𝑁𝑆𝑆(𝑘𝑘)𝑘𝑘 ) (3) 

 

1). 𝐵𝐵𝑀𝑀([𝑁𝑁,+∞)) = 𝐵𝐵(𝑋𝑋 ≥ 𝑌𝑌) = 𝑠𝑠𝑢𝑢𝑠𝑠
𝑢𝑢
𝑚𝑚𝑖𝑖𝑎𝑎
 (𝜇𝜇𝑀𝑀(𝑢𝑢),

𝑠𝑠𝑢𝑢𝑠𝑠
𝑣𝑣 ≤ 𝑢𝑢(𝑣𝑣)) =

= 𝑠𝑠𝑢𝑢𝑠𝑠
𝑢𝑢 ≥ 𝑣𝑣

𝑚𝑚𝑖𝑖𝑎𝑎
 (𝜇𝜇𝑀𝑀(𝑢𝑢), 𝜇𝜇𝑁𝑁(𝑣𝑣))   

(4) 

 

2). 𝐵𝐵𝑀𝑀((𝑁𝑁,+∞)) = 𝐵𝐵(𝑋𝑋 > 𝑌𝑌) = 𝑠𝑠𝑢𝑢𝑠𝑠𝑢𝑢
𝑚𝑚𝑖𝑖𝑎𝑎
 (𝜇𝜇𝑀𝑀(𝑢𝑢), 𝑖𝑖𝑎𝑎𝑖𝑖(1 − 𝜇𝜇𝑁𝑁(𝑣𝑣))) =

= 𝑠𝑠𝑢𝑢𝑠𝑠𝑢𝑢
𝑖𝑖𝑎𝑎𝑖𝑖
𝑣𝑣 > 𝑢𝑢

𝑚𝑚𝑖𝑖𝑎𝑎
 (𝜇𝜇𝑀𝑀(𝑢𝑢), 𝜇𝜇𝑁𝑁(𝑣𝑣))   

(5) 

 

3). 𝐻𝐻𝑀𝑀([𝑁𝑁,+∞)) = 𝐻𝐻(𝑋𝑋 ≥ 𝑌𝑌) = 𝑖𝑖𝑎𝑎𝑖𝑖𝑢𝑢
𝑚𝑚𝑎𝑎𝑚𝑚
 (1 − 𝜇𝜇𝑀𝑀(𝑢𝑢),

𝑠𝑠𝑢𝑢𝑠𝑠
𝑣𝑣 ≤ 𝑢𝑢𝜇𝜇𝑁𝑁(𝑣𝑣)) =

= 𝑖𝑖𝑎𝑎𝑖𝑖𝑢𝑢
𝑠𝑠𝑢𝑢𝑠𝑠
𝑢𝑢 ≤ 𝑣𝑣

𝑚𝑚𝑎𝑎𝑚𝑚
 (1 − 𝜇𝜇𝑀𝑀(𝑢𝑢), 𝜇𝜇𝑁𝑁(𝑣𝑣))   

(6) 

 

4). 𝐻𝐻𝑀𝑀((𝑁𝑁, +∞)) = 𝐻𝐻(𝑋𝑋 > 𝑌𝑌) = 𝑖𝑖𝑎𝑎𝑖𝑖𝑢𝑢
𝑚𝑚𝑎𝑎𝑚𝑚
 (1 − 𝜇𝜇𝑀𝑀(𝑢𝑢), 𝑖𝑖𝑎𝑎𝑖𝑖(1 − 𝜇𝜇𝑁𝑁(𝑣𝑣))) =

= 1 − 𝑠𝑠𝑢𝑢𝑠𝑠
𝑢𝑢 ≤ 𝑣𝑣

𝑚𝑚𝑖𝑖𝑎𝑎
 (𝜇𝜇𝑀𝑀(𝑢𝑢), 𝜇𝜇𝑁𝑁(𝑣𝑣))   

(7) 

 

 

   

 

1 
 

𝐿𝐿(0) = 1, and also ∀𝑢𝑢 > 0, 𝐿𝐿(𝑢𝑢) < 1 ∀𝑢𝑢 < 1, 𝐿𝐿(𝑢𝑢) > 0, 
𝐿𝐿 = 0 or 𝐿𝐿(𝑢𝑢) > 0, ∀𝑢𝑢   𝑎𝑎𝑎𝑎𝑎𝑎     𝐿𝐿(+∞) = 0 

𝜇𝜇𝑝𝑝(𝑢𝑢) =

{
 
 
 
 𝐿𝐿 (

𝑚𝑚 − 𝑢𝑢
𝛼𝛼 )  𝑖𝑖𝑖𝑖 𝑢𝑢 ≤ 𝑚𝑚

1 𝑖𝑖𝑖𝑖 𝑚𝑚 ≤ 𝑢𝑢 ≤ 𝑚𝑚

𝑅𝑅 (𝑢𝑢 −𝑚𝑚𝛽𝛽 )  𝑖𝑖𝑖𝑖 𝑢𝑢 ≥ 𝑚𝑚
 

                                                                      𝑇𝑇𝑖𝑖𝑖𝑖 = ∑ 𝑡𝑡𝑖𝑖𝑖𝑖𝑖𝑖∈𝑀𝑀𝑖𝑖𝑖𝑖
𝑖𝑖≠𝑖𝑖

; 

 𝐹𝐹(𝑎𝑎𝑖𝑖𝑖𝑖) =∑((𝑐𝑐𝑚𝑚)𝑖𝑖𝑖𝑖𝑎𝑎𝑖𝑖𝑖𝑖 + 𝑃𝑃𝑖𝑖𝑖𝑖𝑡𝑡𝑖𝑖𝑖𝑖𝛴𝛴 (𝑎𝑎𝑖𝑖𝑖𝑖)) → min
{𝑛𝑛𝑖𝑖𝑖𝑖}

  (1) 

 

𝑎𝑎𝑖𝑖𝑖𝑖 = {1 if OD pair (𝑖𝑖, 𝑗𝑗) exists0 otherwise  

 

 𝜆𝜆𝑆𝑆𝑘𝑘 = 𝜆𝜆(𝐺𝐺𝑆𝑆𝑘𝑘) =∑(𝑐𝑐𝑚𝑚)𝑖𝑖𝑖𝑖𝑎𝑎𝑖𝑖𝑖𝑖(𝑁𝑁𝑆𝑆(𝑘𝑘)𝑘𝑘 ) +∑𝑃𝑃𝑖𝑖𝑖𝑖
𝑖𝑖,𝑖𝑖𝑖𝑖,𝑖𝑖

𝑡𝑡𝑖𝑖𝑖𝑖𝛴𝛴 (𝑁𝑁𝑆𝑆(𝑘𝑘)𝑘𝑘 ∪ �̃�𝑁𝑆𝑆(𝑘𝑘)𝑘𝑘 ) (2) 

 

 𝐹𝐹 (𝑁𝑁𝑆𝑆(𝑘𝑘)𝑘𝑘 ∪ (𝑖𝑖, 𝑗𝑗)) ≻ 𝐹𝐹(𝑁𝑁𝑆𝑆(𝑘𝑘)𝑘𝑘 ) (3) 

 

1). 𝐵𝐵𝑀𝑀([𝑁𝑁,+∞)) = 𝐵𝐵(𝑋𝑋 ≥ 𝑌𝑌) = 𝑠𝑠𝑢𝑢𝑠𝑠
𝑢𝑢
𝑚𝑚𝑖𝑖𝑎𝑎
 (𝜇𝜇𝑀𝑀(𝑢𝑢),

𝑠𝑠𝑢𝑢𝑠𝑠
𝑣𝑣 ≤ 𝑢𝑢(𝑣𝑣)) =

= 𝑠𝑠𝑢𝑢𝑠𝑠
𝑢𝑢 ≥ 𝑣𝑣

𝑚𝑚𝑖𝑖𝑎𝑎
 (𝜇𝜇𝑀𝑀(𝑢𝑢), 𝜇𝜇𝑁𝑁(𝑣𝑣))   

(4) 

 

2). 𝐵𝐵𝑀𝑀((𝑁𝑁,+∞)) = 𝐵𝐵(𝑋𝑋 > 𝑌𝑌) = 𝑠𝑠𝑢𝑢𝑠𝑠𝑢𝑢
𝑚𝑚𝑖𝑖𝑎𝑎
 (𝜇𝜇𝑀𝑀(𝑢𝑢), 𝑖𝑖𝑎𝑎𝑖𝑖(1 − 𝜇𝜇𝑁𝑁(𝑣𝑣))) =

= 𝑠𝑠𝑢𝑢𝑠𝑠𝑢𝑢
𝑖𝑖𝑎𝑎𝑖𝑖
𝑣𝑣 > 𝑢𝑢

𝑚𝑚𝑖𝑖𝑎𝑎
 (𝜇𝜇𝑀𝑀(𝑢𝑢), 𝜇𝜇𝑁𝑁(𝑣𝑣))   

(5) 

 

3). 𝐻𝐻𝑀𝑀([𝑁𝑁,+∞)) = 𝐻𝐻(𝑋𝑋 ≥ 𝑌𝑌) = 𝑖𝑖𝑎𝑎𝑖𝑖𝑢𝑢
𝑚𝑚𝑎𝑎𝑚𝑚
 (1 − 𝜇𝜇𝑀𝑀(𝑢𝑢),

𝑠𝑠𝑢𝑢𝑠𝑠
𝑣𝑣 ≤ 𝑢𝑢𝜇𝜇𝑁𝑁(𝑣𝑣)) =

= 𝑖𝑖𝑎𝑎𝑖𝑖𝑢𝑢
𝑠𝑠𝑢𝑢𝑠𝑠
𝑢𝑢 ≤ 𝑣𝑣

𝑚𝑚𝑎𝑎𝑚𝑚
 (1 − 𝜇𝜇𝑀𝑀(𝑢𝑢), 𝜇𝜇𝑁𝑁(𝑣𝑣))   

(6) 

 

4). 𝐻𝐻𝑀𝑀((𝑁𝑁, +∞)) = 𝐻𝐻(𝑋𝑋 > 𝑌𝑌) = 𝑖𝑖𝑎𝑎𝑖𝑖𝑢𝑢
𝑚𝑚𝑎𝑎𝑚𝑚
 (1 − 𝜇𝜇𝑀𝑀(𝑢𝑢), 𝑖𝑖𝑎𝑎𝑖𝑖(1 − 𝜇𝜇𝑁𝑁(𝑣𝑣))) =

= 1 − 𝑠𝑠𝑢𝑢𝑠𝑠
𝑢𝑢 ≤ 𝑣𝑣

𝑚𝑚𝑖𝑖𝑎𝑎
 (𝜇𝜇𝑀𝑀(𝑢𝑢), 𝜇𝜇𝑁𝑁(𝑣𝑣))   

(7) 

 

 

– necessity possibility that interval M is larger 
than Ni

B are possibility measures, and H are neces-
sity measures [4]. In the case of (L–R) fuzzy 
intervals, determining the four indices (4–7) 
leads to finding the points of intersection of 
their membership functions. For instance, if  

 

An L-function (or an R-function) that satisfies these conditions is called a form function. The 
membership function of a fuzzy interval M can be represented by two functions, L and R, and four 
parameters: (𝑚𝑚,𝑚𝑚) ∈ 𝑅𝑅2 – kernel of fuzzy interval (fig. 1 and 2) and 𝛼𝛼, 𝛽𝛽 ≥ 0 – left and right fuzziness 
coefficients, given by:  

𝜇𝜇𝑝𝑝(𝑢𝑢) =

{
 
 
 
 𝐿𝐿 (

𝑚𝑚 − 𝑢𝑢
𝛼𝛼 )  𝑖𝑖𝑖𝑖 𝑢𝑢 ≤ 𝑚𝑚

1 𝑖𝑖𝑖𝑖 𝑚𝑚 ≤ 𝑢𝑢 ≤ 𝑚𝑚

𝑅𝑅(𝑢𝑢 −𝑚𝑚𝛽𝛽 )  𝑖𝑖𝑖𝑖 𝑢𝑢 ≥ 𝑚𝑚
 

It is convenient to divide wagon flows into two classes depending on their size. A first class consists of 
small flows, including null flows, i.e. 𝑃𝑃𝑖𝑖𝑖𝑖 = 0. A second class encompasses large flows, i.e. 𝑃𝑃𝑖𝑖𝑖𝑖 ≠ 0. 
Thus, a wagon flow 𝑃𝑃𝑖𝑖𝑖𝑖 can be represented as an (L – R) fuzzy interval of the following type: 𝑃𝑃𝑖𝑖𝑖𝑖 =
(𝑚𝑚,𝑚𝑚, 𝛼𝛼, 𝛽𝛽)𝐿𝐿𝐿𝐿. The functions L and R are of the form 𝐿𝐿 (𝑚𝑚−𝑢𝑢𝛼𝛼 ) = 1 − (1 − ℎ) (𝑚𝑚−𝑢𝑢𝛼𝛼 ) if 0 ≤ 𝑢𝑢 ≤ 𝑚𝑚, 

where h is the degree of likelihood that a given wagon flow 𝑁𝑁𝑖𝑖𝑖𝑖 = 0; 0 ≤ ℎ ≤ 1; 𝑅𝑅 (𝑢𝑢−𝑚𝑚𝛽𝛽 ) = 1 − (𝑢𝑢−𝑚𝑚𝛽𝛽 ) 
if 𝑢𝑢 ≥ 𝑚𝑚. Fuzzy first and second-class wagon flows are shown in Figures 1 and 2. 
 
For the first class of wagons it is assumed that ℎ = 0. Let the shortest route between two vertices of 
graph G be denoted by 𝑀𝑀𝑖𝑖𝑖𝑖. 
In this study, wagon flow size is expressed as an interval to take account of real-life instability of and 
fluctuations in railroad freight volumes. Wagon-hour savings for one wagon moved from station i 
through station j without processing is also shown as an (L – R) fuzzy interval with a kernel of most 
feasible values for a given station 𝑡𝑡𝑖𝑖𝑖𝑖 = (𝑡𝑡, 𝑡𝑡, 𝛼𝛼, 𝛽𝛽)𝐿𝐿𝐿𝐿. It is also assumed that 𝑡𝑡𝑖𝑖𝑖𝑖 = 0, i.e. 𝑡𝑡𝑖𝑖𝑖𝑖 is a real 
number belonging to R. Then 𝑡𝑡𝑖𝑖𝑖𝑖 = (0, 0, 0, 0)𝐿𝐿𝐿𝐿, ∀𝐿𝐿, 𝑅𝑅. 
Wagon-hour accumulation (𝑐𝑐𝑚𝑚)𝑖𝑖𝑖𝑖 related to assembling, on station i, a train serving one origin-
destination (OD) pair and travelling towards station j is also given by an (L – R) fuzzy interval. It is 
known that (𝑐𝑐𝑚𝑚)𝑖𝑖𝑖𝑖 = (𝑐𝑐𝑚𝑚)𝑖𝑖𝑝𝑝, where (𝑖𝑖, 𝑝𝑝) – first arc of route 𝑀𝑀𝑖𝑖𝑖𝑖.  
Savings 𝑇𝑇𝑖𝑖𝑖𝑖 associated with the movement of one wagon without processing, when the OD pair (𝑖𝑖, 𝑗𝑗) is 
singled out (branched off): 
 𝑇𝑇𝑖𝑖𝑖𝑖 = ∑ 𝑡𝑡𝑖𝑖𝐿𝐿𝐿𝐿∈𝑀𝑀𝑖𝑖𝑖𝑖

𝐿𝐿≠𝑖𝑖
; 

here, the sum applies to all stations located on the shortest route 𝑀𝑀𝑖𝑖𝑖𝑖 between stations i and j, and is 
calculated as a sum of fuzzy numbers. 
A sum of two (L–R) fuzzy intervals 𝑀𝑀 = (𝑚𝑚,𝑚𝑚,𝛼𝛼, 𝛽𝛽)𝐿𝐿𝐿𝐿 and 𝑁𝑁 = (𝑛𝑛, 𝑛𝑛, 𝛾𝛾, 𝛿𝛿)𝐿𝐿𝐿𝐿 is of the following form 
[1,3,4,5]: 𝑀𝑀+𝑁𝑁 = (𝑚𝑚 + 𝑛𝑛,𝑚𝑚 + 𝑛𝑛, 𝛼𝛼 + 𝛾𝛾, 𝛽𝛽 + 𝛿𝛿)𝐿𝐿𝐿𝐿. Given this, savings 𝑇𝑇𝑖𝑖𝑖𝑖 associated with the 
movement of one wagon, without processing, when the OD pair (𝑖𝑖, 𝑗𝑗) is branched off, also constitute an 
(L–R) fuzzy interval. Assuming that each wagon  𝑃𝑃𝑖𝑖𝑖𝑖 flow should be processed as fast as possible, we 
obtain total processing wagon-hours ∑ 𝑃𝑃𝑖𝑖𝑖𝑖𝑡𝑡𝑖𝑖𝑖𝑖𝛴𝛴𝑖𝑖,𝑖𝑖 , where 𝑡𝑡𝑖𝑖𝑖𝑖𝛴𝛴  is the length of the shortest route 𝑀𝑀𝑖𝑖𝑖𝑖𝑁𝑁 between 
stations i and j in the graph of processing operations N and is given by 𝑡𝑡𝑖𝑖𝑖𝑖𝛴𝛴 = ∑ 𝑡𝑡𝑖𝑖𝐿𝐿𝐿𝐿∈𝑀𝑀𝑖𝑖𝑖𝑖𝑁𝑁 . Also note that 

the operation of multiplication in sum ∑ 𝑃𝑃𝑖𝑖𝑖𝑖𝑡𝑡𝑖𝑖𝑖𝑖 𝛴𝛴𝑖𝑖,𝑖𝑖  involves fuzzy numbers (𝑃𝑃𝑖𝑖𝑖𝑖 𝑖𝑖 𝑡𝑡𝑖𝑖𝑖𝑖𝛴𝛴 − fuzzy intervals). 
According to [1,3,4,5], multiplication of (L – R) fuzzy intervals 𝑀𝑀 = (𝑚𝑚,𝑚𝑚,𝛼𝛼, 𝛽𝛽)𝐿𝐿𝐿𝐿 and 𝑁𝑁 =
(𝑛𝑛, 𝑛𝑛, 𝛾𝛾, 𝛿𝛿)𝐿𝐿𝐿𝐿takes the following form: 
𝑁𝑁 ∙ 𝑁𝑁 = (𝑚𝑚𝑛𝑛,𝑚𝑚𝑛𝑛,𝑚𝑚𝑛𝑛 − (𝑚𝑚 − 𝛼𝛼)(𝑛𝑛 − 𝛾𝛾), (𝑚𝑚 + 𝛽𝛽)(𝑛𝑛 + 𝛿𝛿) −𝑚𝑚𝑛𝑛)𝐿𝐿𝐿𝐿. 
The objective function 𝐹𝐹(𝑛𝑛𝑖𝑖𝑖𝑖) describing the wagon-hours of accumulation and processing of wagons 
has the following form:  
 𝐹𝐹(𝑛𝑛𝑖𝑖𝑖𝑖) =∑((𝑐𝑐𝑚𝑚)𝑖𝑖𝑖𝑖𝑛𝑛𝑖𝑖𝑖𝑖 + 𝑃𝑃𝑖𝑖𝑖𝑖𝑡𝑡𝑖𝑖𝑖𝑖𝛴𝛴(𝑛𝑛𝑖𝑖𝑖𝑖)) → min

{𝑛𝑛𝑖𝑖𝑖𝑖}
  (1) 

where 
𝑛𝑛𝑖𝑖𝑖𝑖 = {1 if OD pair (𝑖𝑖, 𝑗𝑗) exists0 otherwise  

 and N = 

 

An L-function (or an R-function) that satisfies these conditions is called a form function. The 
membership function of a fuzzy interval M can be represented by two functions, L and R, and four 
parameters: (𝑚𝑚,𝑚𝑚) ∈ 𝑅𝑅2 – kernel of fuzzy interval (fig. 1 and 2) and 𝛼𝛼, 𝛽𝛽 ≥ 0 – left and right fuzziness 
coefficients, given by:  

𝜇𝜇𝑝𝑝(𝑢𝑢) =

{
 
 
 
 𝐿𝐿 (

𝑚𝑚 − 𝑢𝑢
𝛼𝛼 )  𝑖𝑖𝑖𝑖 𝑢𝑢 ≤ 𝑚𝑚

1 𝑖𝑖𝑖𝑖 𝑚𝑚 ≤ 𝑢𝑢 ≤ 𝑚𝑚

𝑅𝑅(𝑢𝑢 −𝑚𝑚𝛽𝛽 )  𝑖𝑖𝑖𝑖 𝑢𝑢 ≥ 𝑚𝑚
 

It is convenient to divide wagon flows into two classes depending on their size. A first class consists of 
small flows, including null flows, i.e. 𝑃𝑃𝑖𝑖𝑖𝑖 = 0. A second class encompasses large flows, i.e. 𝑃𝑃𝑖𝑖𝑖𝑖 ≠ 0. 
Thus, a wagon flow 𝑃𝑃𝑖𝑖𝑖𝑖 can be represented as an (L – R) fuzzy interval of the following type: 𝑃𝑃𝑖𝑖𝑖𝑖 =
(𝑚𝑚,𝑚𝑚, 𝛼𝛼, 𝛽𝛽)𝐿𝐿𝐿𝐿. The functions L and R are of the form 𝐿𝐿 (𝑚𝑚−𝑢𝑢𝛼𝛼 ) = 1 − (1 − ℎ) (𝑚𝑚−𝑢𝑢𝛼𝛼 ) if 0 ≤ 𝑢𝑢 ≤ 𝑚𝑚, 

where h is the degree of likelihood that a given wagon flow 𝑁𝑁𝑖𝑖𝑖𝑖 = 0; 0 ≤ ℎ ≤ 1; 𝑅𝑅 (𝑢𝑢−𝑚𝑚𝛽𝛽 ) = 1 − (𝑢𝑢−𝑚𝑚𝛽𝛽 ) 
if 𝑢𝑢 ≥ 𝑚𝑚. Fuzzy first and second-class wagon flows are shown in Figures 1 and 2. 
 
For the first class of wagons it is assumed that ℎ = 0. Let the shortest route between two vertices of 
graph G be denoted by 𝑀𝑀𝑖𝑖𝑖𝑖. 
In this study, wagon flow size is expressed as an interval to take account of real-life instability of and 
fluctuations in railroad freight volumes. Wagon-hour savings for one wagon moved from station i 
through station j without processing is also shown as an (L – R) fuzzy interval with a kernel of most 
feasible values for a given station 𝑡𝑡𝑖𝑖𝑖𝑖 = (𝑡𝑡, 𝑡𝑡, 𝛼𝛼, 𝛽𝛽)𝐿𝐿𝐿𝐿. It is also assumed that 𝑡𝑡𝑖𝑖𝑖𝑖 = 0, i.e. 𝑡𝑡𝑖𝑖𝑖𝑖 is a real 
number belonging to R. Then 𝑡𝑡𝑖𝑖𝑖𝑖 = (0, 0, 0, 0)𝐿𝐿𝐿𝐿, ∀𝐿𝐿, 𝑅𝑅. 
Wagon-hour accumulation (𝑐𝑐𝑚𝑚)𝑖𝑖𝑖𝑖 related to assembling, on station i, a train serving one origin-
destination (OD) pair and travelling towards station j is also given by an (L – R) fuzzy interval. It is 
known that (𝑐𝑐𝑚𝑚)𝑖𝑖𝑖𝑖 = (𝑐𝑐𝑚𝑚)𝑖𝑖𝑝𝑝, where (𝑖𝑖, 𝑝𝑝) – first arc of route 𝑀𝑀𝑖𝑖𝑖𝑖.  
Savings 𝑇𝑇𝑖𝑖𝑖𝑖 associated with the movement of one wagon without processing, when the OD pair (𝑖𝑖, 𝑗𝑗) is 
singled out (branched off): 
 𝑇𝑇𝑖𝑖𝑖𝑖 = ∑ 𝑡𝑡𝑖𝑖𝐿𝐿𝐿𝐿∈𝑀𝑀𝑖𝑖𝑖𝑖

𝐿𝐿≠𝑖𝑖
; 

here, the sum applies to all stations located on the shortest route 𝑀𝑀𝑖𝑖𝑖𝑖 between stations i and j, and is 
calculated as a sum of fuzzy numbers. 
A sum of two (L–R) fuzzy intervals 𝑀𝑀 = (𝑚𝑚,𝑚𝑚,𝛼𝛼, 𝛽𝛽)𝐿𝐿𝐿𝐿 and 𝑁𝑁 = (𝑛𝑛, 𝑛𝑛, 𝛾𝛾, 𝛿𝛿)𝐿𝐿𝐿𝐿 is of the following form 
[1,3,4,5]: 𝑀𝑀+𝑁𝑁 = (𝑚𝑚 + 𝑛𝑛,𝑚𝑚 + 𝑛𝑛, 𝛼𝛼 + 𝛾𝛾, 𝛽𝛽 + 𝛿𝛿)𝐿𝐿𝐿𝐿. Given this, savings 𝑇𝑇𝑖𝑖𝑖𝑖 associated with the 
movement of one wagon, without processing, when the OD pair (𝑖𝑖, 𝑗𝑗) is branched off, also constitute an 
(L–R) fuzzy interval. Assuming that each wagon  𝑃𝑃𝑖𝑖𝑖𝑖 flow should be processed as fast as possible, we 
obtain total processing wagon-hours ∑ 𝑃𝑃𝑖𝑖𝑖𝑖𝑡𝑡𝑖𝑖𝑖𝑖𝛴𝛴𝑖𝑖,𝑖𝑖 , where 𝑡𝑡𝑖𝑖𝑖𝑖𝛴𝛴  is the length of the shortest route 𝑀𝑀𝑖𝑖𝑖𝑖𝑁𝑁 between 
stations i and j in the graph of processing operations N and is given by 𝑡𝑡𝑖𝑖𝑖𝑖𝛴𝛴 = ∑ 𝑡𝑡𝑖𝑖𝐿𝐿𝐿𝐿∈𝑀𝑀𝑖𝑖𝑖𝑖𝑁𝑁 . Also note that 

the operation of multiplication in sum ∑ 𝑃𝑃𝑖𝑖𝑖𝑖𝑡𝑡𝑖𝑖𝑖𝑖 𝛴𝛴𝑖𝑖,𝑖𝑖  involves fuzzy numbers (𝑃𝑃𝑖𝑖𝑖𝑖 𝑖𝑖 𝑡𝑡𝑖𝑖𝑖𝑖𝛴𝛴 − fuzzy intervals). 
According to [1,3,4,5], multiplication of (L – R) fuzzy intervals 𝑀𝑀 = (𝑚𝑚,𝑚𝑚,𝛼𝛼, 𝛽𝛽)𝐿𝐿𝐿𝐿 and 𝑁𝑁 =
(𝑛𝑛, 𝑛𝑛, 𝛾𝛾, 𝛿𝛿)𝐿𝐿𝐿𝐿takes the following form: 
𝑁𝑁 ∙ 𝑁𝑁 = (𝑚𝑚𝑛𝑛,𝑚𝑚𝑛𝑛,𝑚𝑚𝑛𝑛 − (𝑚𝑚 − 𝛼𝛼)(𝑛𝑛 − 𝛾𝛾), (𝑚𝑚 + 𝛽𝛽)(𝑛𝑛 + 𝛿𝛿) −𝑚𝑚𝑛𝑛)𝐿𝐿𝐿𝐿. 
The objective function 𝐹𝐹(𝑛𝑛𝑖𝑖𝑖𝑖) describing the wagon-hours of accumulation and processing of wagons 
has the following form:  
 𝐹𝐹(𝑛𝑛𝑖𝑖𝑖𝑖) =∑((𝑐𝑐𝑚𝑚)𝑖𝑖𝑖𝑖𝑛𝑛𝑖𝑖𝑖𝑖 + 𝑃𝑃𝑖𝑖𝑖𝑖𝑡𝑡𝑖𝑖𝑖𝑖𝛴𝛴(𝑛𝑛𝑖𝑖𝑖𝑖)) → min

{𝑛𝑛𝑖𝑖𝑖𝑖}
  (1) 

where 
𝑛𝑛𝑖𝑖𝑖𝑖 = {1 if OD pair (𝑖𝑖, 𝑗𝑗) exists0 otherwise  

, then ex-
pressions (4–7) take the following form:

1 
 

 

 

 𝐵𝐵(𝑋𝑋 ≥ 𝑌𝑌) = max (0, min (1, 1 + (𝑚𝑚 − 𝑛𝑛)/(𝛽𝛽 + 𝛾𝛾))) (8) 
 

 

 𝐻𝐻(𝑋𝑋 ≥ 𝑌𝑌) = max (0, min (1, (𝑚𝑚 − 𝑛𝑛 + 𝛾𝛾)/(𝛼𝛼 + 𝛾𝛾))) (9) 

 

 𝐵𝐵(𝑋𝑋 > 𝑌𝑌) = max (0, min(1, (𝑚𝑚 − 𝑛𝑛 + 𝛽𝛽)/(𝛽𝛽 + 𝛿𝛿))) (10) 

 

 𝐻𝐻(𝑋𝑋 > 𝑌𝑌) = max (0, min (1, (𝑚𝑚 − 𝑛𝑛)/(𝛼𝛼 + 𝛿𝛿))) (11) 
 

- if 𝑚𝑚 = 𝑛𝑛, 𝛽𝛽 + 𝛾𝛾 = 0, then, to calculate 𝐵𝐵(𝑋𝑋 ≥ 𝑌𝑌), coefficients 𝛽𝛽, 𝛾𝛾 can be replaced with 
any positive number; 

- if 𝑚𝑚 = 𝑛𝑛, 𝛼𝛼 + 𝛿𝛿 = 0, then, to calculate 𝐻𝐻(𝑋𝑋 > 𝑌𝑌), coefficients 𝛼𝛼, 𝛿𝛿 can be replaced with 
any positive number; 

- if 𝑚𝑚 = 𝑛𝑛, 𝛼𝛼 + 𝛾𝛾 = 0, then 𝐻𝐻(𝑋𝑋 ≥ 𝑌𝑌) = 0; 

- if 𝑚𝑚 = 𝑛𝑛, 𝛽𝛽 + 𝛿𝛿 = 0, then 𝐵𝐵(𝑋𝑋 > 𝑌𝑌) = 0. 

𝑡𝑡21 = (3, 5, 1, 1); 𝑡𝑡32 = (2, 4, 1, 1); 43 = 2, 4, 1, 1;  𝑡𝑡54 = 3, 5, 1, 1.  

𝐹𝐹(𝑁𝑁1) ∑((𝑐𝑐𝑚𝑚)𝑖𝑖𝑖𝑖𝑛𝑛𝑖𝑖𝑖𝑖 + 𝑃𝑃𝑖𝑖𝑖𝑖𝑡𝑡𝑖𝑖𝑖𝑖
𝛴𝛴 ) = (4900, 5100, 25, 25) + (5452, 11484, 2333, 2973)

𝑖𝑖,𝑖𝑖
= (10352, 16352, 2958, 2998) 

 

𝜆𝜆1 = 𝜆𝜆(𝐺𝐺1) = ∑(𝑐𝑐𝑚𝑚)𝑖𝑖𝑖𝑖𝑛𝑛𝑖𝑖𝑖𝑖
𝑖𝑖,𝑖𝑖

(𝑁𝑁1) + ∑ 𝑃𝑃𝑖𝑖𝑖𝑖𝑡𝑡𝑖𝑖𝑖𝑖
𝛴𝛴

𝑖𝑖,𝑖𝑖
(𝑁𝑁1 ∪ �̃�𝑁1) = (4900, 5100, 25, 25). 

 
 

𝜆𝜆2 = 𝜆𝜆(𝐺𝐺2) = ∑(𝑐𝑐𝑚𝑚)𝑖𝑖𝑖𝑖𝑛𝑛𝑖𝑖𝑖𝑖
𝑖𝑖,𝑖𝑖

(𝑁𝑁2) + ∑ 𝑃𝑃𝑖𝑖𝑖𝑖𝑡𝑡𝑖𝑖𝑖𝑖
𝛴𝛴

𝑖𝑖,𝑖𝑖
(𝑁𝑁2 ∪ �̃�𝑁2) = (6020, 6480, 102, 130) 

– dominance possibility

1 
 

 

 

 𝐵𝐵(𝑋𝑋 ≥ 𝑌𝑌) = max (0, min (1, 1 + (𝑚𝑚 − 𝑛𝑛)/(𝛽𝛽 + 𝛾𝛾))) (8) 
 

 

 𝐻𝐻(𝑋𝑋 ≥ 𝑌𝑌) = max (0, min (1, (𝑚𝑚 − 𝑛𝑛 + 𝛾𝛾)/(𝛼𝛼 + 𝛾𝛾))) (9) 

 

 𝐵𝐵(𝑋𝑋 > 𝑌𝑌) = max (0, min(1, (𝑚𝑚 − 𝑛𝑛 + 𝛽𝛽)/(𝛽𝛽 + 𝛿𝛿))) (10) 

 

 𝐻𝐻(𝑋𝑋 > 𝑌𝑌) = max (0, min (1, (𝑚𝑚 − 𝑛𝑛)/(𝛼𝛼 + 𝛿𝛿))) (11) 
 

- if 𝑚𝑚 = 𝑛𝑛, 𝛽𝛽 + 𝛾𝛾 = 0, then, to calculate 𝐵𝐵(𝑋𝑋 ≥ 𝑌𝑌), coefficients 𝛽𝛽, 𝛾𝛾 can be replaced with 
any positive number; 

- if 𝑚𝑚 = 𝑛𝑛, 𝛼𝛼 + 𝛿𝛿 = 0, then, to calculate 𝐻𝐻(𝑋𝑋 > 𝑌𝑌), coefficients 𝛼𝛼, 𝛿𝛿 can be replaced with 
any positive number; 

- if 𝑚𝑚 = 𝑛𝑛, 𝛼𝛼 + 𝛾𝛾 = 0, then 𝐻𝐻(𝑋𝑋 ≥ 𝑌𝑌) = 0; 

- if 𝑚𝑚 = 𝑛𝑛, 𝛽𝛽 + 𝛿𝛿 = 0, then 𝐵𝐵(𝑋𝑋 > 𝑌𝑌) = 0. 

𝑡𝑡21 = (3, 5, 1, 1); 𝑡𝑡32 = (2, 4, 1, 1); 43 = 2, 4, 1, 1;  𝑡𝑡54 = 3, 5, 1, 1.  

𝐹𝐹(𝑁𝑁1) ∑((𝑐𝑐𝑚𝑚)𝑖𝑖𝑖𝑖𝑛𝑛𝑖𝑖𝑖𝑖 + 𝑃𝑃𝑖𝑖𝑖𝑖𝑡𝑡𝑖𝑖𝑖𝑖
𝛴𝛴 ) = (4900, 5100, 25, 25) + (5452, 11484, 2333, 2973)

𝑖𝑖,𝑖𝑖
= (10352, 16352, 2958, 2998) 

 

𝜆𝜆1 = 𝜆𝜆(𝐺𝐺1) = ∑(𝑐𝑐𝑚𝑚)𝑖𝑖𝑖𝑖𝑛𝑛𝑖𝑖𝑖𝑖
𝑖𝑖,𝑖𝑖

(𝑁𝑁1) + ∑ 𝑃𝑃𝑖𝑖𝑖𝑖𝑡𝑡𝑖𝑖𝑖𝑖
𝛴𝛴

𝑖𝑖,𝑖𝑖
(𝑁𝑁1 ∪ �̃�𝑁1) = (4900, 5100, 25, 25). 

 
 

𝜆𝜆2 = 𝜆𝜆(𝐺𝐺2) = ∑(𝑐𝑐𝑚𝑚)𝑖𝑖𝑖𝑖𝑛𝑛𝑖𝑖𝑖𝑖
𝑖𝑖,𝑖𝑖

(𝑁𝑁2) + ∑ 𝑃𝑃𝑖𝑖𝑖𝑖𝑡𝑡𝑖𝑖𝑖𝑖
𝛴𝛴

𝑖𝑖,𝑖𝑖
(𝑁𝑁2 ∪ �̃�𝑁2) = (6020, 6480, 102, 130) 

– dominance necessity

1 
 

 

 

 𝐵𝐵(𝑋𝑋 ≥ 𝑌𝑌) = max (0, min (1, 1 + (𝑚𝑚 − 𝑛𝑛)/(𝛽𝛽 + 𝛾𝛾))) (8) 
 

 

 𝐻𝐻(𝑋𝑋 ≥ 𝑌𝑌) = max (0, min (1, (𝑚𝑚 − 𝑛𝑛 + 𝛾𝛾)/(𝛼𝛼 + 𝛾𝛾))) (9) 

 

 𝐵𝐵(𝑋𝑋 > 𝑌𝑌) = max (0, min(1, (𝑚𝑚 − 𝑛𝑛 + 𝛽𝛽)/(𝛽𝛽 + 𝛿𝛿))) (10) 

 

 𝐻𝐻(𝑋𝑋 > 𝑌𝑌) = max (0, min (1, (𝑚𝑚 − 𝑛𝑛)/(𝛼𝛼 + 𝛿𝛿))) (11) 
 

- if 𝑚𝑚 = 𝑛𝑛, 𝛽𝛽 + 𝛾𝛾 = 0, then, to calculate 𝐵𝐵(𝑋𝑋 ≥ 𝑌𝑌), coefficients 𝛽𝛽, 𝛾𝛾 can be replaced with 
any positive number; 

- if 𝑚𝑚 = 𝑛𝑛, 𝛼𝛼 + 𝛿𝛿 = 0, then, to calculate 𝐻𝐻(𝑋𝑋 > 𝑌𝑌), coefficients 𝛼𝛼, 𝛿𝛿 can be replaced with 
any positive number; 

- if 𝑚𝑚 = 𝑛𝑛, 𝛼𝛼 + 𝛾𝛾 = 0, then 𝐻𝐻(𝑋𝑋 ≥ 𝑌𝑌) = 0; 

- if 𝑚𝑚 = 𝑛𝑛, 𝛽𝛽 + 𝛿𝛿 = 0, then 𝐵𝐵(𝑋𝑋 > 𝑌𝑌) = 0. 

𝑡𝑡21 = (3, 5, 1, 1); 𝑡𝑡32 = (2, 4, 1, 1); 43 = 2, 4, 1, 1;  𝑡𝑡54 = 3, 5, 1, 1.  

𝐹𝐹(𝑁𝑁1) ∑((𝑐𝑐𝑚𝑚)𝑖𝑖𝑖𝑖𝑛𝑛𝑖𝑖𝑖𝑖 + 𝑃𝑃𝑖𝑖𝑖𝑖𝑡𝑡𝑖𝑖𝑖𝑖
𝛴𝛴 ) = (4900, 5100, 25, 25) + (5452, 11484, 2333, 2973)

𝑖𝑖,𝑖𝑖
= (10352, 16352, 2958, 2998) 

 

𝜆𝜆1 = 𝜆𝜆(𝐺𝐺1) = ∑(𝑐𝑐𝑚𝑚)𝑖𝑖𝑖𝑖𝑛𝑛𝑖𝑖𝑖𝑖
𝑖𝑖,𝑖𝑖

(𝑁𝑁1) + ∑ 𝑃𝑃𝑖𝑖𝑖𝑖𝑡𝑡𝑖𝑖𝑖𝑖
𝛴𝛴

𝑖𝑖,𝑖𝑖
(𝑁𝑁1 ∪ �̃�𝑁1) = (4900, 5100, 25, 25). 

 
 

𝜆𝜆2 = 𝜆𝜆(𝐺𝐺2) = ∑(𝑐𝑐𝑚𝑚)𝑖𝑖𝑖𝑖𝑛𝑛𝑖𝑖𝑖𝑖
𝑖𝑖,𝑖𝑖

(𝑁𝑁2) + ∑ 𝑃𝑃𝑖𝑖𝑖𝑖𝑡𝑡𝑖𝑖𝑖𝑖
𝛴𝛴

𝑖𝑖,𝑖𝑖
(𝑁𝑁2 ∪ �̃�𝑁2) = (6020, 6480, 102, 130) 

– strict dominance possibility

 

1 
 

 

 

 𝐵𝐵(𝑋𝑋 ≥ 𝑌𝑌) = max (0, min (1, 1 + (𝑚𝑚 − 𝑛𝑛)/(𝛽𝛽 + 𝛾𝛾))) (8) 
 

 

 𝐻𝐻(𝑋𝑋 ≥ 𝑌𝑌) = max (0, min (1, (𝑚𝑚 − 𝑛𝑛 + 𝛾𝛾)/(𝛼𝛼 + 𝛾𝛾))) (9) 

 

 𝐵𝐵(𝑋𝑋 > 𝑌𝑌) = max (0, min(1, (𝑚𝑚 − 𝑛𝑛 + 𝛽𝛽)/(𝛽𝛽 + 𝛿𝛿))) (10) 

 

 𝐻𝐻(𝑋𝑋 > 𝑌𝑌) = max (0, min (1, (𝑚𝑚 − 𝑛𝑛)/(𝛼𝛼 + 𝛿𝛿))) (11) 
 

- if 𝑚𝑚 = 𝑛𝑛, 𝛽𝛽 + 𝛾𝛾 = 0, then, to calculate 𝐵𝐵(𝑋𝑋 ≥ 𝑌𝑌), coefficients 𝛽𝛽, 𝛾𝛾 can be replaced with 
any positive number; 

- if 𝑚𝑚 = 𝑛𝑛, 𝛼𝛼 + 𝛿𝛿 = 0, then, to calculate 𝐻𝐻(𝑋𝑋 > 𝑌𝑌), coefficients 𝛼𝛼, 𝛿𝛿 can be replaced with 
any positive number; 

- if 𝑚𝑚 = 𝑛𝑛, 𝛼𝛼 + 𝛾𝛾 = 0, then 𝐻𝐻(𝑋𝑋 ≥ 𝑌𝑌) = 0; 

- if 𝑚𝑚 = 𝑛𝑛, 𝛽𝛽 + 𝛿𝛿 = 0, then 𝐵𝐵(𝑋𝑋 > 𝑌𝑌) = 0. 

𝑡𝑡21 = (3, 5, 1, 1); 𝑡𝑡32 = (2, 4, 1, 1); 43 = 2, 4, 1, 1;  𝑡𝑡54 = 3, 5, 1, 1.  

𝐹𝐹(𝑁𝑁1) ∑((𝑐𝑐𝑚𝑚)𝑖𝑖𝑖𝑖𝑛𝑛𝑖𝑖𝑖𝑖 + 𝑃𝑃𝑖𝑖𝑖𝑖𝑡𝑡𝑖𝑖𝑖𝑖
𝛴𝛴 ) = (4900, 5100, 25, 25) + (5452, 11484, 2333, 2973)

𝑖𝑖,𝑖𝑖
= (10352, 16352, 2958, 2998) 

 

𝜆𝜆1 = 𝜆𝜆(𝐺𝐺1) = ∑(𝑐𝑐𝑚𝑚)𝑖𝑖𝑖𝑖𝑛𝑛𝑖𝑖𝑖𝑖
𝑖𝑖,𝑖𝑖

(𝑁𝑁1) + ∑ 𝑃𝑃𝑖𝑖𝑖𝑖𝑡𝑡𝑖𝑖𝑖𝑖
𝛴𝛴

𝑖𝑖,𝑖𝑖
(𝑁𝑁1 ∪ �̃�𝑁1) = (4900, 5100, 25, 25). 

 
 

𝜆𝜆2 = 𝜆𝜆(𝐺𝐺2) = ∑(𝑐𝑐𝑚𝑚)𝑖𝑖𝑖𝑖𝑛𝑛𝑖𝑖𝑖𝑖
𝑖𝑖,𝑖𝑖

(𝑁𝑁2) + ∑ 𝑃𝑃𝑖𝑖𝑖𝑖𝑡𝑡𝑖𝑖𝑖𝑖
𝛴𝛴

𝑖𝑖,𝑖𝑖
(𝑁𝑁2 ∪ �̃�𝑁2) = (6020, 6480, 102, 130) 

– strict dominance necessity 

It is easy to notice that formulas (8–11) are not 
true when the sum of fuzziness coefficients is 0, i.e. 
when M and N are regular closed intervals. In that 
case, the zero fuzziness coefficients should be re-
placed with positive coefficients belonging to inter-
val (0,1) so that the membership functions intersect 
at a point whose Y-coordinate lies outside interval 
[0,1]. Moreover, the following operations are true:

1 
 

 

 

 𝐵𝐵(𝑋𝑋 ≥ 𝑌𝑌) = max (0, min (1, 1 + (𝑚𝑚 − 𝑛𝑛)/(𝛽𝛽 + 𝛾𝛾))) (8) 
 

 

 𝐻𝐻(𝑋𝑋 ≥ 𝑌𝑌) = max (0, min (1, (𝑚𝑚 − 𝑛𝑛 + 𝛾𝛾)/(𝛼𝛼 + 𝛾𝛾))) (9) 

 

 𝐵𝐵(𝑋𝑋 > 𝑌𝑌) = max (0, min(1, (𝑚𝑚 − 𝑛𝑛 + 𝛽𝛽)/(𝛽𝛽 + 𝛿𝛿))) (10) 

 

 𝐻𝐻(𝑋𝑋 > 𝑌𝑌) = max (0, min (1, (𝑚𝑚 − 𝑛𝑛)/(𝛼𝛼 + 𝛿𝛿))) (11) 
 

- if 𝑚𝑚 = 𝑛𝑛, 𝛽𝛽 + 𝛾𝛾 = 0, then, to calculate 𝐵𝐵(𝑋𝑋 ≥ 𝑌𝑌), coefficients 𝛽𝛽, 𝛾𝛾 can be replaced with 
any positive number; 

- if 𝑚𝑚 = 𝑛𝑛, 𝛼𝛼 + 𝛿𝛿 = 0, then, to calculate 𝐻𝐻(𝑋𝑋 > 𝑌𝑌), coefficients 𝛼𝛼, 𝛿𝛿 can be replaced with 
any positive number; 

- if 𝑚𝑚 = 𝑛𝑛, 𝛼𝛼 + 𝛾𝛾 = 0, then 𝐻𝐻(𝑋𝑋 ≥ 𝑌𝑌) = 0; 

- if 𝑚𝑚 = 𝑛𝑛, 𝛽𝛽 + 𝛿𝛿 = 0, then 𝐵𝐵(𝑋𝑋 > 𝑌𝑌) = 0. 

𝑡𝑡21 = (3, 5, 1, 1); 𝑡𝑡32 = (2, 4, 1, 1); 43 = 2, 4, 1, 1;  𝑡𝑡54 = 3, 5, 1, 1.  

𝐹𝐹(𝑁𝑁1) ∑((𝑐𝑐𝑚𝑚)𝑖𝑖𝑖𝑖𝑛𝑛𝑖𝑖𝑖𝑖 + 𝑃𝑃𝑖𝑖𝑖𝑖𝑡𝑡𝑖𝑖𝑖𝑖
𝛴𝛴 ) = (4900, 5100, 25, 25) + (5452, 11484, 2333, 2973)

𝑖𝑖,𝑖𝑖
= (10352, 16352, 2958, 2998) 

 

𝜆𝜆1 = 𝜆𝜆(𝐺𝐺1) = ∑(𝑐𝑐𝑚𝑚)𝑖𝑖𝑖𝑖𝑛𝑛𝑖𝑖𝑖𝑖
𝑖𝑖,𝑖𝑖

(𝑁𝑁1) + ∑ 𝑃𝑃𝑖𝑖𝑖𝑖𝑡𝑡𝑖𝑖𝑖𝑖
𝛴𝛴

𝑖𝑖,𝑖𝑖
(𝑁𝑁1 ∪ �̃�𝑁1) = (4900, 5100, 25, 25). 

 
 

𝜆𝜆2 = 𝜆𝜆(𝐺𝐺2) = ∑(𝑐𝑐𝑚𝑚)𝑖𝑖𝑖𝑖𝑛𝑛𝑖𝑖𝑖𝑖
𝑖𝑖,𝑖𝑖

(𝑁𝑁2) + ∑ 𝑃𝑃𝑖𝑖𝑖𝑖𝑡𝑡𝑖𝑖𝑖𝑖
𝛴𝛴

𝑖𝑖,𝑖𝑖
(𝑁𝑁2 ∪ �̃�𝑁2) = (6020, 6480, 102, 130) 

coefficients b, g can be replaced with any positive 
number;– possibility that interval M is not smaller than Ni

(4)

(5)

(6)

(7)
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(8)

(9)

(11)

(10)
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 𝐵𝐵(𝑋𝑋 ≥ 𝑌𝑌) = max (0, min (1, 1 + (𝑚𝑚 − 𝑛𝑛)/(𝛽𝛽 + 𝛾𝛾))) (8) 
 

 

 𝐻𝐻(𝑋𝑋 ≥ 𝑌𝑌) = max (0, min (1, (𝑚𝑚 − 𝑛𝑛 + 𝛾𝛾)/(𝛼𝛼 + 𝛾𝛾))) (9) 

 

 𝐵𝐵(𝑋𝑋 > 𝑌𝑌) = max (0, min(1, (𝑚𝑚 − 𝑛𝑛 + 𝛽𝛽)/(𝛽𝛽 + 𝛿𝛿))) (10) 

 

 𝐻𝐻(𝑋𝑋 > 𝑌𝑌) = max (0, min (1, (𝑚𝑚 − 𝑛𝑛)/(𝛼𝛼 + 𝛿𝛿))) (11) 
 

- if 𝑚𝑚 = 𝑛𝑛, 𝛽𝛽 + 𝛾𝛾 = 0, then, to calculate 𝐵𝐵(𝑋𝑋 ≥ 𝑌𝑌), coefficients 𝛽𝛽, 𝛾𝛾 can be replaced with 
any positive number; 

- if 𝑚𝑚 = 𝑛𝑛, 𝛼𝛼 + 𝛿𝛿 = 0, then, to calculate 𝐻𝐻(𝑋𝑋 > 𝑌𝑌), coefficients 𝛼𝛼, 𝛿𝛿 can be replaced with 
any positive number; 

- if 𝑚𝑚 = 𝑛𝑛, 𝛼𝛼 + 𝛾𝛾 = 0, then 𝐻𝐻(𝑋𝑋 ≥ 𝑌𝑌) = 0; 

- if 𝑚𝑚 = 𝑛𝑛, 𝛽𝛽 + 𝛿𝛿 = 0, then 𝐵𝐵(𝑋𝑋 > 𝑌𝑌) = 0. 

𝑡𝑡21 = (3, 5, 1, 1); 𝑡𝑡32 = (2, 4, 1, 1); 43 = 2, 4, 1, 1;  𝑡𝑡54 = 3, 5, 1, 1.  

𝐹𝐹(𝑁𝑁1) ∑((𝑐𝑐𝑚𝑚)𝑖𝑖𝑖𝑖𝑛𝑛𝑖𝑖𝑖𝑖 + 𝑃𝑃𝑖𝑖𝑖𝑖𝑡𝑡𝑖𝑖𝑖𝑖
𝛴𝛴 ) = (4900, 5100, 25, 25) + (5452, 11484, 2333, 2973)

𝑖𝑖,𝑖𝑖
= (10352, 16352, 2958, 2998) 

 

𝜆𝜆1 = 𝜆𝜆(𝐺𝐺1) = ∑(𝑐𝑐𝑚𝑚)𝑖𝑖𝑖𝑖𝑛𝑛𝑖𝑖𝑖𝑖
𝑖𝑖,𝑖𝑖

(𝑁𝑁1) + ∑ 𝑃𝑃𝑖𝑖𝑖𝑖𝑡𝑡𝑖𝑖𝑖𝑖
𝛴𝛴

𝑖𝑖,𝑖𝑖
(𝑁𝑁1 ∪ �̃�𝑁1) = (4900, 5100, 25, 25). 

 
 

𝜆𝜆2 = 𝜆𝜆(𝐺𝐺2) = ∑(𝑐𝑐𝑚𝑚)𝑖𝑖𝑖𝑖𝑛𝑛𝑖𝑖𝑖𝑖
𝑖𝑖,𝑖𝑖

(𝑁𝑁2) + ∑ 𝑃𝑃𝑖𝑖𝑖𝑖𝑡𝑡𝑖𝑖𝑖𝑖
𝛴𝛴

𝑖𝑖,𝑖𝑖
(𝑁𝑁2 ∪ �̃�𝑁2) = (6020, 6480, 102, 130) 

coefficients a, b can be replaced with any positive 
number;

1 
 

 

 

 𝐵𝐵(𝑋𝑋 ≥ 𝑌𝑌) = max (0, min (1, 1 + (𝑚𝑚 − 𝑛𝑛)/(𝛽𝛽 + 𝛾𝛾))) (8) 
 

 

 𝐻𝐻(𝑋𝑋 ≥ 𝑌𝑌) = max (0, min (1, (𝑚𝑚 − 𝑛𝑛 + 𝛾𝛾)/(𝛼𝛼 + 𝛾𝛾))) (9) 

 

 𝐵𝐵(𝑋𝑋 > 𝑌𝑌) = max (0, min(1, (𝑚𝑚 − 𝑛𝑛 + 𝛽𝛽)/(𝛽𝛽 + 𝛿𝛿))) (10) 

 

 𝐻𝐻(𝑋𝑋 > 𝑌𝑌) = max (0, min (1, (𝑚𝑚 − 𝑛𝑛)/(𝛼𝛼 + 𝛿𝛿))) (11) 
 

- if 𝑚𝑚 = 𝑛𝑛, 𝛽𝛽 + 𝛾𝛾 = 0, then, to calculate 𝐵𝐵(𝑋𝑋 ≥ 𝑌𝑌), coefficients 𝛽𝛽, 𝛾𝛾 can be replaced with 
any positive number; 

- if 𝑚𝑚 = 𝑛𝑛, 𝛼𝛼 + 𝛿𝛿 = 0, then, to calculate 𝐻𝐻(𝑋𝑋 > 𝑌𝑌), coefficients 𝛼𝛼, 𝛿𝛿 can be replaced with 
any positive number; 

- if 𝑚𝑚 = 𝑛𝑛, 𝛼𝛼 + 𝛾𝛾 = 0, then 𝐻𝐻(𝑋𝑋 ≥ 𝑌𝑌) = 0; 

- if 𝑚𝑚 = 𝑛𝑛, 𝛽𝛽 + 𝛿𝛿 = 0, then 𝐵𝐵(𝑋𝑋 > 𝑌𝑌) = 0. 

𝑡𝑡21 = (3, 5, 1, 1); 𝑡𝑡32 = (2, 4, 1, 1); 43 = 2, 4, 1, 1;  𝑡𝑡54 = 3, 5, 1, 1.  

𝐹𝐹(𝑁𝑁1) ∑((𝑐𝑐𝑚𝑚)𝑖𝑖𝑖𝑖𝑛𝑛𝑖𝑖𝑖𝑖 + 𝑃𝑃𝑖𝑖𝑖𝑖𝑡𝑡𝑖𝑖𝑖𝑖
𝛴𝛴 ) = (4900, 5100, 25, 25) + (5452, 11484, 2333, 2973)

𝑖𝑖,𝑖𝑖
= (10352, 16352, 2958, 2998) 

 

𝜆𝜆1 = 𝜆𝜆(𝐺𝐺1) = ∑(𝑐𝑐𝑚𝑚)𝑖𝑖𝑖𝑖𝑛𝑛𝑖𝑖𝑖𝑖
𝑖𝑖,𝑖𝑖

(𝑁𝑁1) + ∑ 𝑃𝑃𝑖𝑖𝑖𝑖𝑡𝑡𝑖𝑖𝑖𝑖
𝛴𝛴

𝑖𝑖,𝑖𝑖
(𝑁𝑁1 ∪ �̃�𝑁1) = (4900, 5100, 25, 25). 

 
 

𝜆𝜆2 = 𝜆𝜆(𝐺𝐺2) = ∑(𝑐𝑐𝑚𝑚)𝑖𝑖𝑖𝑖𝑛𝑛𝑖𝑖𝑖𝑖
𝑖𝑖,𝑖𝑖

(𝑁𝑁2) + ∑ 𝑃𝑃𝑖𝑖𝑖𝑖𝑡𝑡𝑖𝑖𝑖𝑖
𝛴𝛴

𝑖𝑖,𝑖𝑖
(𝑁𝑁2 ∪ �̃�𝑁2) = (6020, 6480, 102, 130) 

Example [2]

Determine an optimal railroad blocking plan 
under relative uncertainty for a railway network 
region shown in Figure 3. Fuzzy wagon-hours of 
accumulation cmij = (980, 1020, 5, 5), where i, j = 
1,6. Fuzzy wagon flows are shown in Table 1. The 
savings of wagon-hours for wagons moved with-
out processing have the following fuzzy values:

 

1 
 

 

 

 𝐵𝐵(𝑋𝑋 ≥ 𝑌𝑌) = max (0, min (1, 1 + (𝑚𝑚 − 𝑛𝑛)/(𝛽𝛽 + 𝛾𝛾))) (8) 
 

 

 𝐻𝐻(𝑋𝑋 ≥ 𝑌𝑌) = max (0, min (1, (𝑚𝑚 − 𝑛𝑛 + 𝛾𝛾)/(𝛼𝛼 + 𝛾𝛾))) (9) 

 

 𝐵𝐵(𝑋𝑋 > 𝑌𝑌) = max (0, min(1, (𝑚𝑚 − 𝑛𝑛 + 𝛽𝛽)/(𝛽𝛽 + 𝛿𝛿))) (10) 

 

 𝐻𝐻(𝑋𝑋 > 𝑌𝑌) = max (0, min (1, (𝑚𝑚 − 𝑛𝑛)/(𝛼𝛼 + 𝛿𝛿))) (11) 
 

- if 𝑚𝑚 = 𝑛𝑛, 𝛽𝛽 + 𝛾𝛾 = 0, then, to calculate 𝐵𝐵(𝑋𝑋 ≥ 𝑌𝑌), coefficients 𝛽𝛽, 𝛾𝛾 can be replaced with 
any positive number; 

- if 𝑚𝑚 = 𝑛𝑛, 𝛼𝛼 + 𝛿𝛿 = 0, then, to calculate 𝐻𝐻(𝑋𝑋 > 𝑌𝑌), coefficients 𝛼𝛼, 𝛿𝛿 can be replaced with 
any positive number; 

- if 𝑚𝑚 = 𝑛𝑛, 𝛼𝛼 + 𝛾𝛾 = 0, then 𝐻𝐻(𝑋𝑋 ≥ 𝑌𝑌) = 0; 

- if 𝑚𝑚 = 𝑛𝑛, 𝛽𝛽 + 𝛿𝛿 = 0, then 𝐵𝐵(𝑋𝑋 > 𝑌𝑌) = 0. 

𝑡𝑡21 = (3, 5, 1, 1); 𝑡𝑡32 = (2, 4, 1, 1); 43 = 2, 4, 1, 1;  𝑡𝑡54 = 3, 5, 1, 1.  

𝐹𝐹(𝑁𝑁1) ∑((𝑐𝑐𝑚𝑚)𝑖𝑖𝑖𝑖𝑛𝑛𝑖𝑖𝑖𝑖 + 𝑃𝑃𝑖𝑖𝑖𝑖𝑡𝑡𝑖𝑖𝑖𝑖
𝛴𝛴 ) = (4900, 5100, 25, 25) + (5452, 11484, 2333, 2973)

𝑖𝑖,𝑖𝑖
= (10352, 16352, 2958, 2998) 

 

𝜆𝜆1 = 𝜆𝜆(𝐺𝐺1) = ∑(𝑐𝑐𝑚𝑚)𝑖𝑖𝑖𝑖𝑛𝑛𝑖𝑖𝑖𝑖
𝑖𝑖,𝑖𝑖

(𝑁𝑁1) + ∑ 𝑃𝑃𝑖𝑖𝑖𝑖𝑡𝑡𝑖𝑖𝑖𝑖
𝛴𝛴

𝑖𝑖,𝑖𝑖
(𝑁𝑁1 ∪ �̃�𝑁1) = (4900, 5100, 25, 25). 

 
 

𝜆𝜆2 = 𝜆𝜆(𝐺𝐺2) = ∑(𝑐𝑐𝑚𝑚)𝑖𝑖𝑖𝑖𝑛𝑛𝑖𝑖𝑖𝑖
𝑖𝑖,𝑖𝑖

(𝑁𝑁2) + ∑ 𝑃𝑃𝑖𝑖𝑖𝑖𝑡𝑡𝑖𝑖𝑖𝑖
𝛴𝛴

𝑖𝑖,𝑖𝑖
(𝑁𝑁2 ∪ �̃�𝑁2) = (6020, 6480, 102, 130) 

 t

1 
 

 

 

 𝐵𝐵(𝑋𝑋 ≥ 𝑌𝑌) = max (0, min (1, 1 + (𝑚𝑚 − 𝑛𝑛)/(𝛽𝛽 + 𝛾𝛾))) (8) 
 

 

 𝐻𝐻(𝑋𝑋 ≥ 𝑌𝑌) = max (0, min (1, (𝑚𝑚 − 𝑛𝑛 + 𝛾𝛾)/(𝛼𝛼 + 𝛾𝛾))) (9) 

 

 𝐵𝐵(𝑋𝑋 > 𝑌𝑌) = max (0, min(1, (𝑚𝑚 − 𝑛𝑛 + 𝛽𝛽)/(𝛽𝛽 + 𝛿𝛿))) (10) 

 

 𝐻𝐻(𝑋𝑋 > 𝑌𝑌) = max (0, min (1, (𝑚𝑚 − 𝑛𝑛)/(𝛼𝛼 + 𝛿𝛿))) (11) 
 

- if 𝑚𝑚 = 𝑛𝑛, 𝛽𝛽 + 𝛾𝛾 = 0, then, to calculate 𝐵𝐵(𝑋𝑋 ≥ 𝑌𝑌), coefficients 𝛽𝛽, 𝛾𝛾 can be replaced with 
any positive number; 

- if 𝑚𝑚 = 𝑛𝑛, 𝛼𝛼 + 𝛿𝛿 = 0, then, to calculate 𝐻𝐻(𝑋𝑋 > 𝑌𝑌), coefficients 𝛼𝛼, 𝛿𝛿 can be replaced with 
any positive number; 

- if 𝑚𝑚 = 𝑛𝑛, 𝛼𝛼 + 𝛾𝛾 = 0, then 𝐻𝐻(𝑋𝑋 ≥ 𝑌𝑌) = 0; 

- if 𝑚𝑚 = 𝑛𝑛, 𝛽𝛽 + 𝛿𝛿 = 0, then 𝐵𝐵(𝑋𝑋 > 𝑌𝑌) = 0. 

𝑡𝑡21 = (3, 5, 1, 1); 𝑡𝑡32 = (2, 4, 1, 1); 43 = 2, 4, 1, 1;  𝑡𝑡54 = 3, 5, 1, 1.  

𝐹𝐹(𝑁𝑁1) ∑((𝑐𝑐𝑚𝑚)𝑖𝑖𝑖𝑖𝑛𝑛𝑖𝑖𝑖𝑖 + 𝑃𝑃𝑖𝑖𝑖𝑖𝑡𝑡𝑖𝑖𝑖𝑖
𝛴𝛴 ) = (4900, 5100, 25, 25) + (5452, 11484, 2333, 2973)

𝑖𝑖,𝑖𝑖
= (10352, 16352, 2958, 2998) 

 

𝜆𝜆1 = 𝜆𝜆(𝐺𝐺1) = ∑(𝑐𝑐𝑚𝑚)𝑖𝑖𝑖𝑖𝑛𝑛𝑖𝑖𝑖𝑖
𝑖𝑖,𝑖𝑖

(𝑁𝑁1) + ∑ 𝑃𝑃𝑖𝑖𝑖𝑖𝑡𝑡𝑖𝑖𝑖𝑖
𝛴𝛴

𝑖𝑖,𝑖𝑖
(𝑁𝑁1 ∪ �̃�𝑁1) = (4900, 5100, 25, 25). 

 
 

𝜆𝜆2 = 𝜆𝜆(𝐺𝐺2) = ∑(𝑐𝑐𝑚𝑚)𝑖𝑖𝑖𝑖𝑛𝑛𝑖𝑖𝑖𝑖
𝑖𝑖,𝑖𝑖

(𝑁𝑁2) + ∑ 𝑃𝑃𝑖𝑖𝑖𝑖𝑡𝑡𝑖𝑖𝑖𝑖
𝛴𝛴

𝑖𝑖,𝑖𝑖
(𝑁𝑁2 ∪ �̃�𝑁2) = (6020, 6480, 102, 130) 

Each vertex of the solution tree (Fig. 4) fea-
tures a set of OD pairs 

 

Function (1) will be used later on in this paper to solve a discrete programming problem using the 
branch-and-bound method.  
The estimate of the objective function (1) is: 
 𝜆𝜆𝑆𝑆

𝑘𝑘 = 𝜆𝜆(𝐺𝐺𝑆𝑆
𝑘𝑘) = ∑(𝑐𝑐𝑐𝑐)𝑖𝑖𝑖𝑖𝑛𝑛𝑖𝑖𝑖𝑖(𝑁𝑁𝑆𝑆(𝑘𝑘)

𝑘𝑘 ) + ∑ 𝑃𝑃𝑖𝑖𝑖𝑖
𝑖𝑖,𝑖𝑖𝑖𝑖,𝑖𝑖

𝑡𝑡𝑖𝑖𝑖𝑖
𝛴𝛴 (𝑁𝑁𝑆𝑆(𝑘𝑘)

𝑘𝑘 ∪ �̃�𝑁𝑆𝑆(𝑘𝑘)
𝑘𝑘 ) (2) 

where 𝐺𝐺𝑆𝑆
𝑘𝑘 is one of the subsets created in the k-th branching step, 𝑁𝑁𝑆𝑆(𝑘𝑘)

𝑘𝑘  is a set of OD pairs included in 
the optimal plan in the k-th step of branching, and �̃�𝑁𝑆𝑆(𝑘𝑘)

𝑘𝑘  is a set of OD pairs analysed in the k-th step of 
branching.  
Set 𝑁𝑁𝑆𝑆(𝑘𝑘)

𝑘𝑘  is the set of necessary OD pairs in the k-th step of branching. Set �̃�𝑁𝑆𝑆(𝑘𝑘)
𝑘𝑘  includes any OD pair 

that does not belong to 𝑁𝑁𝑆𝑆(𝑘𝑘)
𝑘𝑘  and meets the following condition: 

 𝐹𝐹 (𝑁𝑁𝑆𝑆(𝑘𝑘)
𝑘𝑘 ∪ (𝑖𝑖, 𝑗𝑗)) ≻ 𝐹𝐹(𝑁𝑁𝑆𝑆(𝑘𝑘)

𝑘𝑘 ) (3) 

where ≻ is a preference symbol. 
Each estimate of the objective function (1) is an (L – R) fuzzy interval. The estimates are compared in 
the following way: in accordance with the possibility theory, fuzzy intervals M and N are compared 
using indices of possibility and necessity of fuzzy events. To find those indices, the possibility and 
necessity of fuzzy events are determined [𝑁𝑁, +∞) 𝑎𝑎𝑛𝑛𝑎𝑎 (𝑁𝑁, +∞) for the distribution function 𝜇𝜇𝑚𝑚. 
 
B are possibility measures, and H are necessity measures[4]. 
In the case of (L – R) fuzzy intervals, determining the four indices (4 ÷ 7) leads to finding the points 
of intersection of their membership functions. For instance, if  
𝑀𝑀 = (𝑐𝑐, 𝑐𝑐, 𝛼𝛼, 𝛽𝛽)𝐿𝐿𝐿𝐿 and 𝑁𝑁 = (𝑛𝑛, 𝑛𝑛, 𝛾𝛾, 𝛿𝛿)𝐿𝐿𝐿𝐿, then expressions (4 ÷ 7) take the following form: 
   

It is easy to notice that formulas (8 ÷ 11) are not true when the sum of fuzziness coefficients is 0, i.e. 
when M and N are regular closed intervals. In that case, the zero fuzziness coefficients should be 
replaced with positive coefficients belonging to interval (0,1) so that the membership functions intersect 
at a point whose Y-coordinate lies outside interval [0,1]. Moreover, the following operations are true: 
- if 𝑐𝑐 = 𝑛𝑛, 𝛽𝛽 + 𝛾𝛾 = 0, then, to calculate 𝐵𝐵(𝑋𝑋 ≥ 𝑌𝑌), coefficients 𝛽𝛽, 𝛾𝛾 can be replaced with any positive 
number; 
- if 𝑐𝑐 = 𝑛𝑛, 𝛼𝛼 + 𝛿𝛿 = 0, then, to calculate 𝐻𝐻(𝑋𝑋 > 𝑌𝑌), coefficients 𝛼𝛼, 𝛿𝛿 can be replaced with any positive 
number; 
- if 𝑐𝑐 = 𝑛𝑛, 𝛼𝛼 + 𝛾𝛾 = 0, then 𝐻𝐻(𝑋𝑋 ≥ 𝑌𝑌) = 0; 
- if 𝑐𝑐 = 𝑛𝑛, 𝛽𝛽 + 𝛿𝛿 = 0, then 𝐵𝐵(𝑋𝑋 > 𝑌𝑌) = 0. 
Example [2] 
Determine an optimal railroad blocking plan under relative uncertainty for a railway network region 
shown in Figure 3. 
Figure 3. Region of a railway network 
Fuzzy wagon-hours of accumulation 𝑐𝑐𝑐𝑐𝑖𝑖𝑖𝑖 = (980, 1020, 5, 5), where 𝑖𝑖, 𝑗𝑗 = 1,6. 
Fuzzy wagon flows are shown in Table 1. 
Table 1. Wagon flows 
The savings of wagon-hours for wagons moved without processing have the following fuzzy values: 

𝑡𝑡21 = (3, 5, 1, 1); 𝑡𝑡32 = (2, 4, 1, 1); 𝑡𝑡43 = (2, 4, 1, 1); 𝑡𝑡54 = (3, 5, 1, 1).  
Each vertex of the solution tree (Fig. 4) features a set of OD pairs �̃�𝑁𝑆𝑆(𝑘𝑘)

𝑘𝑘  in the top line, and estimate 
values in the bottom line 𝜆𝜆𝑆𝑆

𝑘𝑘 = 𝜆𝜆(𝐺𝐺𝑆𝑆
𝑘𝑘). The numbers on the arcs denote the OD pairs that have been 

added to the set of optimal OD pairs. Moreover, Fig. 4 shows the order of vertices that leads to the 
optimal solution. 
Step zero. In this step, the set of singled out OD pairs contains only those that make up point-to-point 
routes (direct OD pairs). To determine the set of OD pairs �̃�𝑁1 that satisfy condition (3), we compare the 
value of the objective function defined in the set of direct OD pairs N1 with the values of the objective 
function for sets 𝑁𝑁1 ∪ (𝑖𝑖, 𝑗𝑗), where OD pairs (𝑖𝑖, 𝑗𝑗) originate from a set of indirect wagon flows {𝑃𝑃𝑖𝑖𝑖𝑖}. 
We calculate the value of the objective function for set 𝑁𝑁1: 

 in the top line, and 
estimate values in the bottom line 
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where ≻ is a preference symbol. 
Each estimate of the objective function (1) is an (L – R) fuzzy interval. The estimates are compared in 
the following way: in accordance with the possibility theory, fuzzy intervals M and N are compared 
using indices of possibility and necessity of fuzzy events. To find those indices, the possibility and 
necessity of fuzzy events are determined [𝑁𝑁, +∞) 𝑎𝑎𝑛𝑛𝑎𝑎 (𝑁𝑁, +∞) for the distribution function 𝜇𝜇𝑚𝑚. 
 
B are possibility measures, and H are necessity measures[4]. 
In the case of (L – R) fuzzy intervals, determining the four indices (4 ÷ 7) leads to finding the points 
of intersection of their membership functions. For instance, if  
𝑀𝑀 = (𝑐𝑐, 𝑐𝑐, 𝛼𝛼, 𝛽𝛽)𝐿𝐿𝐿𝐿 and 𝑁𝑁 = (𝑛𝑛, 𝑛𝑛, 𝛾𝛾, 𝛿𝛿)𝐿𝐿𝐿𝐿, then expressions (4 ÷ 7) take the following form: 
   

It is easy to notice that formulas (8 ÷ 11) are not true when the sum of fuzziness coefficients is 0, i.e. 
when M and N are regular closed intervals. In that case, the zero fuzziness coefficients should be 
replaced with positive coefficients belonging to interval (0,1) so that the membership functions intersect 
at a point whose Y-coordinate lies outside interval [0,1]. Moreover, the following operations are true: 
- if 𝑐𝑐 = 𝑛𝑛, 𝛽𝛽 + 𝛾𝛾 = 0, then, to calculate 𝐵𝐵(𝑋𝑋 ≥ 𝑌𝑌), coefficients 𝛽𝛽, 𝛾𝛾 can be replaced with any positive 
number; 
- if 𝑐𝑐 = 𝑛𝑛, 𝛼𝛼 + 𝛿𝛿 = 0, then, to calculate 𝐻𝐻(𝑋𝑋 > 𝑌𝑌), coefficients 𝛼𝛼, 𝛿𝛿 can be replaced with any positive 
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- if 𝑐𝑐 = 𝑛𝑛, 𝛼𝛼 + 𝛾𝛾 = 0, then 𝐻𝐻(𝑋𝑋 ≥ 𝑌𝑌) = 0; 
- if 𝑐𝑐 = 𝑛𝑛, 𝛽𝛽 + 𝛿𝛿 = 0, then 𝐵𝐵(𝑋𝑋 > 𝑌𝑌) = 0. 
Example [2] 
Determine an optimal railroad blocking plan under relative uncertainty for a railway network region 
shown in Figure 3. 
Figure 3. Region of a railway network 
Fuzzy wagon-hours of accumulation 𝑐𝑐𝑐𝑐𝑖𝑖𝑖𝑖 = (980, 1020, 5, 5), where 𝑖𝑖, 𝑗𝑗 = 1,6. 
Fuzzy wagon flows are shown in Table 1. 
Table 1. Wagon flows 
The savings of wagon-hours for wagons moved without processing have the following fuzzy values: 

𝑡𝑡21 = (3, 5, 1, 1); 𝑡𝑡32 = (2, 4, 1, 1); 𝑡𝑡43 = (2, 4, 1, 1); 𝑡𝑡54 = (3, 5, 1, 1).  
Each vertex of the solution tree (Fig. 4) features a set of OD pairs �̃�𝑁𝑆𝑆(𝑘𝑘)

𝑘𝑘  in the top line, and estimate 
values in the bottom line 𝜆𝜆𝑆𝑆

𝑘𝑘 = 𝜆𝜆(𝐺𝐺𝑆𝑆
𝑘𝑘). The numbers on the arcs denote the OD pairs that have been 

added to the set of optimal OD pairs. Moreover, Fig. 4 shows the order of vertices that leads to the 
optimal solution. 
Step zero. In this step, the set of singled out OD pairs contains only those that make up point-to-point 
routes (direct OD pairs). To determine the set of OD pairs �̃�𝑁1 that satisfy condition (3), we compare the 
value of the objective function defined in the set of direct OD pairs N1 with the values of the objective 
function for sets 𝑁𝑁1 ∪ (𝑖𝑖, 𝑗𝑗), where OD pairs (𝑖𝑖, 𝑗𝑗) originate from a set of indirect wagon flows {𝑃𝑃𝑖𝑖𝑖𝑖}. 
We calculate the value of the objective function for set 𝑁𝑁1: 
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necessity of fuzzy events are determined [𝑁𝑁, +∞) 𝑎𝑎𝑛𝑛𝑎𝑎 (𝑁𝑁, +∞) for the distribution function 𝜇𝜇𝑚𝑚. 
 
B are possibility measures, and H are necessity measures[4]. 
In the case of (L – R) fuzzy intervals, determining the four indices (4 ÷ 7) leads to finding the points 
of intersection of their membership functions. For instance, if  
𝑀𝑀 = (𝑐𝑐, 𝑐𝑐, 𝛼𝛼, 𝛽𝛽)𝐿𝐿𝐿𝐿 and 𝑁𝑁 = (𝑛𝑛, 𝑛𝑛, 𝛾𝛾, 𝛿𝛿)𝐿𝐿𝐿𝐿, then expressions (4 ÷ 7) take the following form: 
   

It is easy to notice that formulas (8 ÷ 11) are not true when the sum of fuzziness coefficients is 0, i.e. 
when M and N are regular closed intervals. In that case, the zero fuzziness coefficients should be 
replaced with positive coefficients belonging to interval (0,1) so that the membership functions intersect 
at a point whose Y-coordinate lies outside interval [0,1]. Moreover, the following operations are true: 
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The savings of wagon-hours for wagons moved without processing have the following fuzzy values: 
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It is easy to notice that formulas (8 ÷ 11) are not true when the sum of fuzziness coefficients is 0, i.e. 
when M and N are regular closed intervals. In that case, the zero fuzziness coefficients should be 
replaced with positive coefficients belonging to interval (0,1) so that the membership functions intersect 
at a point whose Y-coordinate lies outside interval [0,1]. Moreover, the following operations are true: 
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 𝐵𝐵(𝑋𝑋 ≥ 𝑌𝑌) = max (0, min (1, 1 + (𝑚𝑚 − 𝑛𝑛)/(𝛽𝛽 + 𝛾𝛾))) (8) 
 

 

 𝐻𝐻(𝑋𝑋 ≥ 𝑌𝑌) = max (0, min (1, (𝑚𝑚 − 𝑛𝑛 + 𝛾𝛾)/(𝛼𝛼 + 𝛾𝛾))) (9) 

 

 𝐵𝐵(𝑋𝑋 > 𝑌𝑌) = max (0, min(1, (𝑚𝑚 − 𝑛𝑛 + 𝛽𝛽)/(𝛽𝛽 + 𝛿𝛿))) (10) 

 

 𝐻𝐻(𝑋𝑋 > 𝑌𝑌) = max (0, min (1, (𝑚𝑚 − 𝑛𝑛)/(𝛼𝛼 + 𝛿𝛿))) (11) 
 

- if 𝑚𝑚 = 𝑛𝑛, 𝛽𝛽 + 𝛾𝛾 = 0, then, to calculate 𝐵𝐵(𝑋𝑋 ≥ 𝑌𝑌), coefficients 𝛽𝛽, 𝛾𝛾 can be replaced with 
any positive number; 

- if 𝑚𝑚 = 𝑛𝑛, 𝛼𝛼 + 𝛿𝛿 = 0, then, to calculate 𝐻𝐻(𝑋𝑋 > 𝑌𝑌), coefficients 𝛼𝛼, 𝛿𝛿 can be replaced with 
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𝑡𝑡21 = (3, 5, 1, 1); 𝑡𝑡32 = (2, 4, 1, 1); 43 = 2, 4, 1, 1;  𝑡𝑡54 = 3, 5, 1, 1.  

𝐹𝐹(𝑁𝑁1) ∑((𝑐𝑐𝑚𝑚)𝑖𝑖𝑖𝑖𝑛𝑛𝑖𝑖𝑖𝑖 + 𝑃𝑃𝑖𝑖𝑖𝑖𝑡𝑡𝑖𝑖𝑖𝑖
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𝑖𝑖,𝑖𝑖
= (10352, 16352, 2958, 2998) 

 

𝜆𝜆1 = 𝜆𝜆(𝐺𝐺1) = ∑(𝑐𝑐𝑚𝑚)𝑖𝑖𝑖𝑖𝑛𝑛𝑖𝑖𝑖𝑖
𝑖𝑖,𝑖𝑖

(𝑁𝑁1) + ∑ 𝑃𝑃𝑖𝑖𝑖𝑖𝑡𝑡𝑖𝑖𝑖𝑖
𝛴𝛴

𝑖𝑖,𝑖𝑖
(𝑁𝑁1 ∪ �̃�𝑁1) = (4900, 5100, 25, 25). 

 
 

𝜆𝜆2 = 𝜆𝜆(𝐺𝐺2) = ∑(𝑐𝑐𝑚𝑚)𝑖𝑖𝑖𝑖𝑛𝑛𝑖𝑖𝑖𝑖
𝑖𝑖,𝑖𝑖

(𝑁𝑁2) + ∑ 𝑃𝑃𝑖𝑖𝑖𝑖𝑡𝑡𝑖𝑖𝑖𝑖
𝛴𝛴

𝑖𝑖,𝑖𝑖
(𝑁𝑁2 ∪ �̃�𝑁2) = (6020, 6480, 102, 130) 

 

1 
 

 

 

 𝐵𝐵(𝑋𝑋 ≥ 𝑌𝑌) = max (0, min (1, 1 + (𝑚𝑚 − 𝑛𝑛)/(𝛽𝛽 + 𝛾𝛾))) (8) 
 

 

 𝐻𝐻(𝑋𝑋 ≥ 𝑌𝑌) = max (0, min (1, (𝑚𝑚 − 𝑛𝑛 + 𝛾𝛾)/(𝛼𝛼 + 𝛾𝛾))) (9) 

 

 𝐵𝐵(𝑋𝑋 > 𝑌𝑌) = max (0, min(1, (𝑚𝑚 − 𝑛𝑛 + 𝛽𝛽)/(𝛽𝛽 + 𝛿𝛿))) (10) 

 

 𝐻𝐻(𝑋𝑋 > 𝑌𝑌) = max (0, min (1, (𝑚𝑚 − 𝑛𝑛)/(𝛼𝛼 + 𝛿𝛿))) (11) 
 

- if 𝑚𝑚 = 𝑛𝑛, 𝛽𝛽 + 𝛾𝛾 = 0, then, to calculate 𝐵𝐵(𝑋𝑋 ≥ 𝑌𝑌), coefficients 𝛽𝛽, 𝛾𝛾 can be replaced with 
any positive number; 

- if 𝑚𝑚 = 𝑛𝑛, 𝛼𝛼 + 𝛿𝛿 = 0, then, to calculate 𝐻𝐻(𝑋𝑋 > 𝑌𝑌), coefficients 𝛼𝛼, 𝛿𝛿 can be replaced with 
any positive number; 

- if 𝑚𝑚 = 𝑛𝑛, 𝛼𝛼 + 𝛾𝛾 = 0, then 𝐻𝐻(𝑋𝑋 ≥ 𝑌𝑌) = 0; 

- if 𝑚𝑚 = 𝑛𝑛, 𝛽𝛽 + 𝛿𝛿 = 0, then 𝐵𝐵(𝑋𝑋 > 𝑌𝑌) = 0. 

𝑡𝑡21 = (3, 5, 1, 1); 𝑡𝑡32 = (2, 4, 1, 1); 43 = 2, 4, 1, 1;  𝑡𝑡54 = 3, 5, 1, 1.  

𝐹𝐹(𝑁𝑁1) ∑((𝑐𝑐𝑚𝑚)𝑖𝑖𝑖𝑖𝑛𝑛𝑖𝑖𝑖𝑖 + 𝑃𝑃𝑖𝑖𝑖𝑖𝑡𝑡𝑖𝑖𝑖𝑖
𝛴𝛴 ) = (4900, 5100, 25, 25) + (5452, 11484, 2333, 2973)

𝑖𝑖,𝑖𝑖
= (10352, 16352, 2958, 2998) 

 

𝜆𝜆1 = 𝜆𝜆(𝐺𝐺1) = ∑(𝑐𝑐𝑚𝑚)𝑖𝑖𝑖𝑖𝑛𝑛𝑖𝑖𝑖𝑖
𝑖𝑖,𝑖𝑖

(𝑁𝑁1) + ∑ 𝑃𝑃𝑖𝑖𝑖𝑖𝑡𝑡𝑖𝑖𝑖𝑖
𝛴𝛴

𝑖𝑖,𝑖𝑖
(𝑁𝑁1 ∪ �̃�𝑁1) = (4900, 5100, 25, 25). 

 
 

𝜆𝜆2 = 𝜆𝜆(𝐺𝐺2) = ∑(𝑐𝑐𝑚𝑚)𝑖𝑖𝑖𝑖𝑛𝑛𝑖𝑖𝑖𝑖
𝑖𝑖,𝑖𝑖

(𝑁𝑁2) + ∑ 𝑃𝑃𝑖𝑖𝑖𝑖𝑡𝑡𝑖𝑖𝑖𝑖
𝛴𝛴

𝑖𝑖,𝑖𝑖
(𝑁𝑁2 ∪ �̃�𝑁2) = (6020, 6480, 102, 130) 

 

1 
 

 

 

 𝐵𝐵(𝑋𝑋 ≥ 𝑌𝑌) = max (0, min (1, 1 + (𝑚𝑚 − 𝑛𝑛)/(𝛽𝛽 + 𝛾𝛾))) (8) 
 

 

 𝐻𝐻(𝑋𝑋 ≥ 𝑌𝑌) = max (0, min (1, (𝑚𝑚 − 𝑛𝑛 + 𝛾𝛾)/(𝛼𝛼 + 𝛾𝛾))) (9) 

 

 𝐵𝐵(𝑋𝑋 > 𝑌𝑌) = max (0, min(1, (𝑚𝑚 − 𝑛𝑛 + 𝛽𝛽)/(𝛽𝛽 + 𝛿𝛿))) (10) 

 

 𝐻𝐻(𝑋𝑋 > 𝑌𝑌) = max (0, min (1, (𝑚𝑚 − 𝑛𝑛)/(𝛼𝛼 + 𝛿𝛿))) (11) 
 

- if 𝑚𝑚 = 𝑛𝑛, 𝛽𝛽 + 𝛾𝛾 = 0, then, to calculate 𝐵𝐵(𝑋𝑋 ≥ 𝑌𝑌), coefficients 𝛽𝛽, 𝛾𝛾 can be replaced with 
any positive number; 

- if 𝑚𝑚 = 𝑛𝑛, 𝛼𝛼 + 𝛿𝛿 = 0, then, to calculate 𝐻𝐻(𝑋𝑋 > 𝑌𝑌), coefficients 𝛼𝛼, 𝛿𝛿 can be replaced with 
any positive number; 

- if 𝑚𝑚 = 𝑛𝑛, 𝛼𝛼 + 𝛾𝛾 = 0, then 𝐻𝐻(𝑋𝑋 ≥ 𝑌𝑌) = 0; 

- if 𝑚𝑚 = 𝑛𝑛, 𝛽𝛽 + 𝛿𝛿 = 0, then 𝐵𝐵(𝑋𝑋 > 𝑌𝑌) = 0. 

𝑡𝑡21 = (3, 5, 1, 1); 𝑡𝑡32 = (2, 4, 1, 1); 43 = 2, 4, 1, 1;  𝑡𝑡54 = 3, 5, 1, 1.  

𝐹𝐹(𝑁𝑁1) ∑((𝑐𝑐𝑚𝑚)𝑖𝑖𝑖𝑖𝑛𝑛𝑖𝑖𝑖𝑖 + 𝑃𝑃𝑖𝑖𝑖𝑖𝑡𝑡𝑖𝑖𝑖𝑖
𝛴𝛴 ) = (4900, 5100, 25, 25) + (5452, 11484, 2333, 2973)

𝑖𝑖,𝑖𝑖
= (10352, 16352, 2958, 2998) 

 

𝜆𝜆1 = 𝜆𝜆(𝐺𝐺1) = ∑(𝑐𝑐𝑚𝑚)𝑖𝑖𝑖𝑖𝑛𝑛𝑖𝑖𝑖𝑖
𝑖𝑖,𝑖𝑖

(𝑁𝑁1) + ∑ 𝑃𝑃𝑖𝑖𝑖𝑖𝑡𝑡𝑖𝑖𝑖𝑖
𝛴𝛴

𝑖𝑖,𝑖𝑖
(𝑁𝑁1 ∪ �̃�𝑁1) = (4900, 5100, 25, 25). 

 
 

𝜆𝜆2 = 𝜆𝜆(𝐺𝐺2) = ∑(𝑐𝑐𝑚𝑚)𝑖𝑖𝑖𝑖𝑛𝑛𝑖𝑖𝑖𝑖
𝑖𝑖,𝑖𝑖

(𝑁𝑁2) + ∑ 𝑃𝑃𝑖𝑖𝑖𝑖𝑡𝑡𝑖𝑖𝑖𝑖
𝛴𝛴

𝑖𝑖,𝑖𝑖
(𝑁𝑁2 ∪ �̃�𝑁2) = (6020, 6480, 102, 130) 

 =
 

1 
 

 

 

 𝐵𝐵(𝑋𝑋 ≥ 𝑌𝑌) = max (0, min (1, 1 + (𝑚𝑚 − 𝑛𝑛)/(𝛽𝛽 + 𝛾𝛾))) (8) 
 

 

 𝐻𝐻(𝑋𝑋 ≥ 𝑌𝑌) = max (0, min (1, (𝑚𝑚 − 𝑛𝑛 + 𝛾𝛾)/(𝛼𝛼 + 𝛾𝛾))) (9) 

 

 𝐵𝐵(𝑋𝑋 > 𝑌𝑌) = max (0, min(1, (𝑚𝑚 − 𝑛𝑛 + 𝛽𝛽)/(𝛽𝛽 + 𝛿𝛿))) (10) 

 

 𝐻𝐻(𝑋𝑋 > 𝑌𝑌) = max (0, min (1, (𝑚𝑚 − 𝑛𝑛)/(𝛼𝛼 + 𝛿𝛿))) (11) 
 

- if 𝑚𝑚 = 𝑛𝑛, 𝛽𝛽 + 𝛾𝛾 = 0, then, to calculate 𝐵𝐵(𝑋𝑋 ≥ 𝑌𝑌), coefficients 𝛽𝛽, 𝛾𝛾 can be replaced with 
any positive number; 

- if 𝑚𝑚 = 𝑛𝑛, 𝛼𝛼 + 𝛿𝛿 = 0, then, to calculate 𝐻𝐻(𝑋𝑋 > 𝑌𝑌), coefficients 𝛼𝛼, 𝛿𝛿 can be replaced with 
any positive number; 

- if 𝑚𝑚 = 𝑛𝑛, 𝛼𝛼 + 𝛾𝛾 = 0, then 𝐻𝐻(𝑋𝑋 ≥ 𝑌𝑌) = 0; 

- if 𝑚𝑚 = 𝑛𝑛, 𝛽𝛽 + 𝛿𝛿 = 0, then 𝐵𝐵(𝑋𝑋 > 𝑌𝑌) = 0. 

𝑡𝑡21 = (3, 5, 1, 1); 𝑡𝑡32 = (2, 4, 1, 1); 43 = 2, 4, 1, 1;  𝑡𝑡54 = 3, 5, 1, 1.  

𝐹𝐹(𝑁𝑁1) ∑((𝑐𝑐𝑚𝑚)𝑖𝑖𝑖𝑖𝑛𝑛𝑖𝑖𝑖𝑖 + 𝑃𝑃𝑖𝑖𝑖𝑖𝑡𝑡𝑖𝑖𝑖𝑖
𝛴𝛴 ) = (4900, 5100, 25, 25) + (5452, 11484, 2333, 2973)

𝑖𝑖,𝑖𝑖
= (10352, 16352, 2958, 2998) 

 

𝜆𝜆1 = 𝜆𝜆(𝐺𝐺1) = ∑(𝑐𝑐𝑚𝑚)𝑖𝑖𝑖𝑖𝑛𝑛𝑖𝑖𝑖𝑖
𝑖𝑖,𝑖𝑖

(𝑁𝑁1) + ∑ 𝑃𝑃𝑖𝑖𝑖𝑖𝑡𝑡𝑖𝑖𝑖𝑖
𝛴𝛴

𝑖𝑖,𝑖𝑖
(𝑁𝑁1 ∪ �̃�𝑁1) = (4900, 5100, 25, 25). 

 
 

𝜆𝜆2 = 𝜆𝜆(𝐺𝐺2) = ∑(𝑐𝑐𝑚𝑚)𝑖𝑖𝑖𝑖𝑛𝑛𝑖𝑖𝑖𝑖
𝑖𝑖,𝑖𝑖

(𝑁𝑁2) + ∑ 𝑃𝑃𝑖𝑖𝑖𝑖𝑡𝑡𝑖𝑖𝑖𝑖
𝛴𝛴

𝑖𝑖,𝑖𝑖
(𝑁𝑁2 ∪ �̃�𝑁2) = (6020, 6480, 102, 130) 

Then, we created all possible sets of type 

 

𝐹𝐹(𝑁𝑁1) ∑((𝑐𝑐𝑐𝑐)𝑖𝑖𝑖𝑖𝑛𝑛𝑖𝑖𝑖𝑖 + 𝑃𝑃𝑖𝑖𝑖𝑖𝑡𝑡𝑖𝑖𝑖𝑖
𝛴𝛴 ) = (4900, 5100, 25, 25) + (5452, 11484, 2333, 2973)

𝑖𝑖,𝑖𝑖
= (10352, 16352, 2958, 2998) 

Then, we created all possible sets of type 𝐵𝐵(𝑋𝑋 ≥ 𝑌𝑌) and determine the values of the objective function 
for them. The results of these calculations are shown in Table 2. 
 
The data in Table 2 demonstrate that at step zero, all OD pairs satisfy the necessary condition. 
The dominance indices show that: 
- at index values higher than 0.5, interval X is significantly larger than interval Y; 
- at H-index values 𝐻𝐻(𝑋𝑋 ≥ 𝑌𝑌) > 0,3 and B-index values 𝐵𝐵(𝑋𝑋 > 𝑌𝑌) > 0,7, interval X is significantly 
larger than interval Y. 
Index values 𝐻𝐻(𝑋𝑋 > 𝑌𝑌) = 0 𝑖𝑖 𝐵𝐵(𝑋𝑋 ≥ 𝑌𝑌) = 1 mean that intervals X and Y partly or fully overlap. 
Formulated in this way, vertex 1 of Fig. 4 contains the following OD pairs (1,3), (1,4), (1,5), (1,6), (2,4), 
(2,5), (2,6), (3,5), (3,6), (4,6). 
 
Step one. We define the possible sets containing OD pairs included in vertex 1 and OD pairs sequentially 
added to them, from among the OD pairs belonging to vertex 1. Through branching, we obtain vertices 
2–11 of the solution tree (Fig. 4) We define the sets of OD pairs for each vertex: 
Vertex 2 
The value of the objective function for the set of OD pairs included in 𝑁𝑁2 in vertex 2 is: 
𝐹𝐹(𝑁𝑁2) ∑ ((𝑐𝑐𝑐𝑐)𝑖𝑖𝑖𝑖𝑛𝑛𝑖𝑖𝑖𝑖 + 𝑃𝑃𝑖𝑖𝑖𝑖𝑡𝑡𝑖𝑖𝑖𝑖

𝛴𝛴 ) = (9727, 14479, 1790, 2264)𝑖𝑖,𝑖𝑖 , 𝑔𝑔𝑔𝑔𝑔𝑔𝑖𝑖𝑔𝑔 𝑁𝑁2 = 𝑁𝑁1 ∪ (1,3). 
When building the set of OD pairs �̃�𝑁2, we check whether the OD pairs of set �̃�𝑁1, not included in set 𝑁𝑁2, 
satisfy the optimality condition (3). To this end, we create all possible sets of type 𝜆𝜆 > 𝜆𝜆13 and determine 
the values of the objective function for them. Table 3 shows the results of these calculations for vertex 
2. 
Figure 4. Solution tree 
It follows from Table 3 that the OD pair (2,6) does not satisfy the necessary condition, and so set �̃�𝑁2 
contains the following OD pairs (1,4), (1,5), (1,6), (2,4), (2,5), (2,6), (3,5), (3,6), (4,6). The estimate 
value is: 

𝜆𝜆2 = 𝜆𝜆(𝐺𝐺2) = ∑(𝑐𝑐𝑐𝑐)𝑖𝑖𝑖𝑖𝑛𝑛𝑖𝑖𝑖𝑖
𝑖𝑖,𝑖𝑖

(𝑁𝑁2) + ∑ 𝑃𝑃𝑖𝑖𝑖𝑖𝑡𝑡𝑖𝑖𝑖𝑖
𝛴𝛴

𝑖𝑖,𝑖𝑖
(𝑁𝑁2 ∪ �̃�𝑁2) = (6020, 6480, 102, 130) 

 and determine the values of the objec-
tive function for them. The results of these calcu-
lations are shown in Table 2.

The data in Table 2 demonstrate that at step 
zero, all OD pairs satisfy the necessary condition.
The dominance indices show that:
− at index values higher than 0.5, interval X is 

significantly larger than interval Y;
− at H-index values 

 

𝐹𝐹(𝑁𝑁1) ∑((𝑐𝑐𝑐𝑐)𝑖𝑖𝑖𝑖𝑛𝑛𝑖𝑖𝑖𝑖 + 𝑃𝑃𝑖𝑖𝑖𝑖𝑡𝑡𝑖𝑖𝑖𝑖
𝛴𝛴 ) = (4900, 5100, 25, 25) + (5452, 11484, 2333, 2973)

𝑖𝑖,𝑖𝑖
= (10352, 16352, 2958, 2998) 

Then, we created all possible sets of type 𝐵𝐵(𝑋𝑋 ≥ 𝑌𝑌) and determine the values of the objective function 
for them. The results of these calculations are shown in Table 2. 
 
The data in Table 2 demonstrate that at step zero, all OD pairs satisfy the necessary condition. 
The dominance indices show that: 
- at index values higher than 0.5, interval X is significantly larger than interval Y; 
- at H-index values 𝐻𝐻(𝑋𝑋 ≥ 𝑌𝑌) > 0,3 and B-index values 𝐵𝐵(𝑋𝑋 > 𝑌𝑌) > 0,7, interval X is significantly 
larger than interval Y. 
Index values 𝐻𝐻(𝑋𝑋 > 𝑌𝑌) = 0 𝑖𝑖 𝐵𝐵(𝑋𝑋 ≥ 𝑌𝑌) = 1 mean that intervals X and Y partly or fully overlap. 
Formulated in this way, vertex 1 of Fig. 4 contains the following OD pairs (1,3), (1,4), (1,5), (1,6), (2,4), 
(2,5), (2,6), (3,5), (3,6), (4,6). 
 
Step one. We define the possible sets containing OD pairs included in vertex 1 and OD pairs sequentially 
added to them, from among the OD pairs belonging to vertex 1. Through branching, we obtain vertices 
2–11 of the solution tree (Fig. 4) We define the sets of OD pairs for each vertex: 
Vertex 2 
The value of the objective function for the set of OD pairs included in 𝑁𝑁2 in vertex 2 is: 
𝐹𝐹(𝑁𝑁2) ∑ ((𝑐𝑐𝑐𝑐)𝑖𝑖𝑖𝑖𝑛𝑛𝑖𝑖𝑖𝑖 + 𝑃𝑃𝑖𝑖𝑖𝑖𝑡𝑡𝑖𝑖𝑖𝑖

𝛴𝛴 ) = (9727, 14479, 1790, 2264)𝑖𝑖,𝑖𝑖 , 𝑔𝑔𝑔𝑔𝑔𝑔𝑖𝑖𝑔𝑔 𝑁𝑁2 = 𝑁𝑁1 ∪ (1,3). 
When building the set of OD pairs �̃�𝑁2, we check whether the OD pairs of set �̃�𝑁1, not included in set 𝑁𝑁2, 
satisfy the optimality condition (3). To this end, we create all possible sets of type 𝜆𝜆 > 𝜆𝜆13 and determine 
the values of the objective function for them. Table 3 shows the results of these calculations for vertex 
2. 
Figure 4. Solution tree 
It follows from Table 3 that the OD pair (2,6) does not satisfy the necessary condition, and so set �̃�𝑁2 
contains the following OD pairs (1,4), (1,5), (1,6), (2,4), (2,5), (2,6), (3,5), (3,6), (4,6). The estimate 
value is: 

𝜆𝜆2 = 𝜆𝜆(𝐺𝐺2) = ∑(𝑐𝑐𝑐𝑐)𝑖𝑖𝑖𝑖𝑛𝑛𝑖𝑖𝑖𝑖
𝑖𝑖,𝑖𝑖

(𝑁𝑁2) + ∑ 𝑃𝑃𝑖𝑖𝑖𝑖𝑡𝑡𝑖𝑖𝑖𝑖
𝛴𝛴

𝑖𝑖,𝑖𝑖
(𝑁𝑁2 ∪ �̃�𝑁2) = (6020, 6480, 102, 130) 

0.3 and B-index 
values 

 

𝐹𝐹(𝑁𝑁1) ∑((𝑐𝑐𝑐𝑐)𝑖𝑖𝑖𝑖𝑛𝑛𝑖𝑖𝑖𝑖 + 𝑃𝑃𝑖𝑖𝑖𝑖𝑡𝑡𝑖𝑖𝑖𝑖
𝛴𝛴 ) = (4900, 5100, 25, 25) + (5452, 11484, 2333, 2973)

𝑖𝑖,𝑖𝑖
= (10352, 16352, 2958, 2998) 

Then, we created all possible sets of type 𝐵𝐵(𝑋𝑋 ≥ 𝑌𝑌) and determine the values of the objective function 
for them. The results of these calculations are shown in Table 2. 
 
The data in Table 2 demonstrate that at step zero, all OD pairs satisfy the necessary condition. 
The dominance indices show that: 
- at index values higher than 0.5, interval X is significantly larger than interval Y; 
- at H-index values 𝐻𝐻(𝑋𝑋 ≥ 𝑌𝑌) > 0,3 and B-index values 𝐵𝐵(𝑋𝑋 > 𝑌𝑌) > 0,7, interval X is significantly 
larger than interval Y. 
Index values 𝐻𝐻(𝑋𝑋 > 𝑌𝑌) = 0 𝑖𝑖 𝐵𝐵(𝑋𝑋 ≥ 𝑌𝑌) = 1 mean that intervals X and Y partly or fully overlap. 
Formulated in this way, vertex 1 of Fig. 4 contains the following OD pairs (1,3), (1,4), (1,5), (1,6), (2,4), 
(2,5), (2,6), (3,5), (3,6), (4,6). 
 
Step one. We define the possible sets containing OD pairs included in vertex 1 and OD pairs sequentially 
added to them, from among the OD pairs belonging to vertex 1. Through branching, we obtain vertices 
2–11 of the solution tree (Fig. 4) We define the sets of OD pairs for each vertex: 
Vertex 2 
The value of the objective function for the set of OD pairs included in 𝑁𝑁2 in vertex 2 is: 
𝐹𝐹(𝑁𝑁2) ∑ ((𝑐𝑐𝑐𝑐)𝑖𝑖𝑖𝑖𝑛𝑛𝑖𝑖𝑖𝑖 + 𝑃𝑃𝑖𝑖𝑖𝑖𝑡𝑡𝑖𝑖𝑖𝑖

𝛴𝛴 ) = (9727, 14479, 1790, 2264)𝑖𝑖,𝑖𝑖 , 𝑔𝑔𝑔𝑔𝑔𝑔𝑖𝑖𝑔𝑔 𝑁𝑁2 = 𝑁𝑁1 ∪ (1,3). 
When building the set of OD pairs �̃�𝑁2, we check whether the OD pairs of set �̃�𝑁1, not included in set 𝑁𝑁2, 
satisfy the optimality condition (3). To this end, we create all possible sets of type 𝜆𝜆 > 𝜆𝜆13 and determine 
the values of the objective function for them. Table 3 shows the results of these calculations for vertex 
2. 
Figure 4. Solution tree 
It follows from Table 3 that the OD pair (2,6) does not satisfy the necessary condition, and so set �̃�𝑁2 
contains the following OD pairs (1,4), (1,5), (1,6), (2,4), (2,5), (2,6), (3,5), (3,6), (4,6). The estimate 
value is: 

𝜆𝜆2 = 𝜆𝜆(𝐺𝐺2) = ∑(𝑐𝑐𝑐𝑐)𝑖𝑖𝑖𝑖𝑛𝑛𝑖𝑖𝑖𝑖
𝑖𝑖,𝑖𝑖

(𝑁𝑁2) + ∑ 𝑃𝑃𝑖𝑖𝑖𝑖𝑡𝑡𝑖𝑖𝑖𝑖
𝛴𝛴

𝑖𝑖,𝑖𝑖
(𝑁𝑁2 ∪ �̃�𝑁2) = (6020, 6480, 102, 130) 

0.7, interval X is signifi-
cantly larger than interval Y.

Index values 

 

𝐹𝐹(𝑁𝑁1) ∑((𝑐𝑐𝑐𝑐)𝑖𝑖𝑖𝑖𝑛𝑛𝑖𝑖𝑖𝑖 + 𝑃𝑃𝑖𝑖𝑖𝑖𝑡𝑡𝑖𝑖𝑖𝑖
𝛴𝛴 ) = (4900, 5100, 25, 25) + (5452, 11484, 2333, 2973)

𝑖𝑖,𝑖𝑖
= (10352, 16352, 2958, 2998) 

Then, we created all possible sets of type 𝐵𝐵(𝑋𝑋 ≥ 𝑌𝑌) and determine the values of the objective function 
for them. The results of these calculations are shown in Table 2. 
 
The data in Table 2 demonstrate that at step zero, all OD pairs satisfy the necessary condition. 
The dominance indices show that: 
- at index values higher than 0.5, interval X is significantly larger than interval Y; 
- at H-index values 𝐻𝐻(𝑋𝑋 ≥ 𝑌𝑌) > 0,3 and B-index values 𝐵𝐵(𝑋𝑋 > 𝑌𝑌) > 0,7, interval X is significantly 
larger than interval Y. 
Index values 𝐻𝐻(𝑋𝑋 > 𝑌𝑌) = 0 𝑖𝑖 𝐵𝐵(𝑋𝑋 ≥ 𝑌𝑌) = 1 mean that intervals X and Y partly or fully overlap. 
Formulated in this way, vertex 1 of Fig. 4 contains the following OD pairs (1,3), (1,4), (1,5), (1,6), (2,4), 
(2,5), (2,6), (3,5), (3,6), (4,6). 
 
Step one. We define the possible sets containing OD pairs included in vertex 1 and OD pairs sequentially 
added to them, from among the OD pairs belonging to vertex 1. Through branching, we obtain vertices 
2–11 of the solution tree (Fig. 4) We define the sets of OD pairs for each vertex: 
Vertex 2 
The value of the objective function for the set of OD pairs included in 𝑁𝑁2 in vertex 2 is: 
𝐹𝐹(𝑁𝑁2) ∑ ((𝑐𝑐𝑐𝑐)𝑖𝑖𝑖𝑖𝑛𝑛𝑖𝑖𝑖𝑖 + 𝑃𝑃𝑖𝑖𝑖𝑖𝑡𝑡𝑖𝑖𝑖𝑖

𝛴𝛴 ) = (9727, 14479, 1790, 2264)𝑖𝑖,𝑖𝑖 , 𝑔𝑔𝑔𝑔𝑔𝑔𝑖𝑖𝑔𝑔 𝑁𝑁2 = 𝑁𝑁1 ∪ (1,3). 
When building the set of OD pairs �̃�𝑁2, we check whether the OD pairs of set �̃�𝑁1, not included in set 𝑁𝑁2, 
satisfy the optimality condition (3). To this end, we create all possible sets of type 𝜆𝜆 > 𝜆𝜆13 and determine 
the values of the objective function for them. Table 3 shows the results of these calculations for vertex 
2. 
Figure 4. Solution tree 
It follows from Table 3 that the OD pair (2,6) does not satisfy the necessary condition, and so set �̃�𝑁2 
contains the following OD pairs (1,4), (1,5), (1,6), (2,4), (2,5), (2,6), (3,5), (3,6), (4,6). The estimate 
value is: 

𝜆𝜆2 = 𝜆𝜆(𝐺𝐺2) = ∑(𝑐𝑐𝑐𝑐)𝑖𝑖𝑖𝑖𝑛𝑛𝑖𝑖𝑖𝑖
𝑖𝑖,𝑖𝑖

(𝑁𝑁2) + ∑ 𝑃𝑃𝑖𝑖𝑖𝑖𝑡𝑡𝑖𝑖𝑖𝑖
𝛴𝛴

𝑖𝑖,𝑖𝑖
(𝑁𝑁2 ∪ �̃�𝑁2) = (6020, 6480, 102, 130) 

 and 

 

𝐹𝐹(𝑁𝑁1) ∑((𝑐𝑐𝑐𝑐)𝑖𝑖𝑖𝑖𝑛𝑛𝑖𝑖𝑖𝑖 + 𝑃𝑃𝑖𝑖𝑖𝑖𝑡𝑡𝑖𝑖𝑖𝑖
𝛴𝛴 ) = (4900, 5100, 25, 25) + (5452, 11484, 2333, 2973)

𝑖𝑖,𝑖𝑖
= (10352, 16352, 2958, 2998) 

Then, we created all possible sets of type 𝐵𝐵(𝑋𝑋 ≥ 𝑌𝑌) and determine the values of the objective function 
for them. The results of these calculations are shown in Table 2. 
 
The data in Table 2 demonstrate that at step zero, all OD pairs satisfy the necessary condition. 
The dominance indices show that: 
- at index values higher than 0.5, interval X is significantly larger than interval Y; 
- at H-index values 𝐻𝐻(𝑋𝑋 ≥ 𝑌𝑌) > 0,3 and B-index values 𝐵𝐵(𝑋𝑋 > 𝑌𝑌) > 0,7, interval X is significantly 
larger than interval Y. 
Index values 𝐻𝐻(𝑋𝑋 > 𝑌𝑌) = 0 𝑖𝑖 𝐵𝐵(𝑋𝑋 ≥ 𝑌𝑌) = 1 mean that intervals X and Y partly or fully overlap. 
Formulated in this way, vertex 1 of Fig. 4 contains the following OD pairs (1,3), (1,4), (1,5), (1,6), (2,4), 
(2,5), (2,6), (3,5), (3,6), (4,6). 
 
Step one. We define the possible sets containing OD pairs included in vertex 1 and OD pairs sequentially 
added to them, from among the OD pairs belonging to vertex 1. Through branching, we obtain vertices 
2–11 of the solution tree (Fig. 4) We define the sets of OD pairs for each vertex: 
Vertex 2 
The value of the objective function for the set of OD pairs included in 𝑁𝑁2 in vertex 2 is: 
𝐹𝐹(𝑁𝑁2) ∑ ((𝑐𝑐𝑐𝑐)𝑖𝑖𝑖𝑖𝑛𝑛𝑖𝑖𝑖𝑖 + 𝑃𝑃𝑖𝑖𝑖𝑖𝑡𝑡𝑖𝑖𝑖𝑖

𝛴𝛴 ) = (9727, 14479, 1790, 2264)𝑖𝑖,𝑖𝑖 , 𝑔𝑔𝑔𝑔𝑔𝑔𝑖𝑖𝑔𝑔 𝑁𝑁2 = 𝑁𝑁1 ∪ (1,3). 
When building the set of OD pairs �̃�𝑁2, we check whether the OD pairs of set �̃�𝑁1, not included in set 𝑁𝑁2, 
satisfy the optimality condition (3). To this end, we create all possible sets of type 𝜆𝜆 > 𝜆𝜆13 and determine 
the values of the objective function for them. Table 3 shows the results of these calculations for vertex 
2. 
Figure 4. Solution tree 
It follows from Table 3 that the OD pair (2,6) does not satisfy the necessary condition, and so set �̃�𝑁2 
contains the following OD pairs (1,4), (1,5), (1,6), (2,4), (2,5), (2,6), (3,5), (3,6), (4,6). The estimate 
value is: 

𝜆𝜆2 = 𝜆𝜆(𝐺𝐺2) = ∑(𝑐𝑐𝑐𝑐)𝑖𝑖𝑖𝑖𝑛𝑛𝑖𝑖𝑖𝑖
𝑖𝑖,𝑖𝑖

(𝑁𝑁2) + ∑ 𝑃𝑃𝑖𝑖𝑖𝑖𝑡𝑡𝑖𝑖𝑖𝑖
𝛴𝛴

𝑖𝑖,𝑖𝑖
(𝑁𝑁2 ∪ �̃�𝑁2) = (6020, 6480, 102, 130) 

 
= 1 mean that intervals X and Y partly or fully 
overlap. Formulated in this way, vertex 1 of Fig. 
4 contains the following OD pairs (1,3), (1,4), 
(1,5), (1,6), (2,4), (2,5), (2,6), (3,5), (3,6), (4,6). 
The lower bound of the objective function for 
vertex 1 is estimated as follows: 

 

1 
 

 

 

 𝐵𝐵(𝑋𝑋 ≥ 𝑌𝑌) = max (0, min (1, 1 + (𝑚𝑚 − 𝑛𝑛)/(𝛽𝛽 + 𝛾𝛾))) (8) 
 

 

 𝐻𝐻(𝑋𝑋 ≥ 𝑌𝑌) = max (0, min (1, (𝑚𝑚 − 𝑛𝑛 + 𝛾𝛾)/(𝛼𝛼 + 𝛾𝛾))) (9) 

 

 𝐵𝐵(𝑋𝑋 > 𝑌𝑌) = max (0, min(1, (𝑚𝑚 − 𝑛𝑛 + 𝛽𝛽)/(𝛽𝛽 + 𝛿𝛿))) (10) 

 

 𝐻𝐻(𝑋𝑋 > 𝑌𝑌) = max (0, min (1, (𝑚𝑚 − 𝑛𝑛)/(𝛼𝛼 + 𝛿𝛿))) (11) 
 

- if 𝑚𝑚 = 𝑛𝑛, 𝛽𝛽 + 𝛾𝛾 = 0, then, to calculate 𝐵𝐵(𝑋𝑋 ≥ 𝑌𝑌), coefficients 𝛽𝛽, 𝛾𝛾 can be replaced with 
any positive number; 

- if 𝑚𝑚 = 𝑛𝑛, 𝛼𝛼 + 𝛿𝛿 = 0, then, to calculate 𝐻𝐻(𝑋𝑋 > 𝑌𝑌), coefficients 𝛼𝛼, 𝛿𝛿 can be replaced with 
any positive number; 

- if 𝑚𝑚 = 𝑛𝑛, 𝛼𝛼 + 𝛾𝛾 = 0, then 𝐻𝐻(𝑋𝑋 ≥ 𝑌𝑌) = 0; 

- if 𝑚𝑚 = 𝑛𝑛, 𝛽𝛽 + 𝛿𝛿 = 0, then 𝐵𝐵(𝑋𝑋 > 𝑌𝑌) = 0. 

𝑡𝑡21 = (3, 5, 1, 1); 𝑡𝑡32 = (2, 4, 1, 1); 43 = 2, 4, 1, 1;  𝑡𝑡54 = 3, 5, 1, 1.  

𝐹𝐹(𝑁𝑁1) ∑((𝑐𝑐𝑚𝑚)𝑖𝑖𝑖𝑖𝑛𝑛𝑖𝑖𝑖𝑖 + 𝑃𝑃𝑖𝑖𝑖𝑖𝑡𝑡𝑖𝑖𝑖𝑖
𝛴𝛴 ) = (4900, 5100, 25, 25) + (5452, 11484, 2333, 2973)

𝑖𝑖,𝑖𝑖
= (10352, 16352, 2958, 2998) 

 

𝜆𝜆1 = 𝜆𝜆(𝐺𝐺1) = ∑(𝑐𝑐𝑚𝑚)𝑖𝑖𝑖𝑖𝑛𝑛𝑖𝑖𝑖𝑖
𝑖𝑖,𝑖𝑖

(𝑁𝑁1) + ∑ 𝑃𝑃𝑖𝑖𝑖𝑖𝑡𝑡𝑖𝑖𝑖𝑖
𝛴𝛴

𝑖𝑖,𝑖𝑖
(𝑁𝑁1 ∪ �̃�𝑁1) = (4900, 5100, 25, 25). 

 
 

𝜆𝜆2 = 𝜆𝜆(𝐺𝐺2) = ∑(𝑐𝑐𝑚𝑚)𝑖𝑖𝑖𝑖𝑛𝑛𝑖𝑖𝑖𝑖
𝑖𝑖,𝑖𝑖

(𝑁𝑁2) + ∑ 𝑃𝑃𝑖𝑖𝑖𝑖𝑡𝑡𝑖𝑖𝑖𝑖
𝛴𝛴

𝑖𝑖,𝑖𝑖
(𝑁𝑁2 ∪ �̃�𝑁2) = (6020, 6480, 102, 130)  

1 
 

 

 

 𝐵𝐵(𝑋𝑋 ≥ 𝑌𝑌) = max (0, min (1, 1 + (𝑚𝑚 − 𝑛𝑛)/(𝛽𝛽 + 𝛾𝛾))) (8) 
 

 

 𝐻𝐻(𝑋𝑋 ≥ 𝑌𝑌) = max (0, min (1, (𝑚𝑚 − 𝑛𝑛 + 𝛾𝛾)/(𝛼𝛼 + 𝛾𝛾))) (9) 

 

 𝐵𝐵(𝑋𝑋 > 𝑌𝑌) = max (0, min(1, (𝑚𝑚 − 𝑛𝑛 + 𝛽𝛽)/(𝛽𝛽 + 𝛿𝛿))) (10) 

 

 𝐻𝐻(𝑋𝑋 > 𝑌𝑌) = max (0, min (1, (𝑚𝑚 − 𝑛𝑛)/(𝛼𝛼 + 𝛿𝛿))) (11) 
 

- if 𝑚𝑚 = 𝑛𝑛, 𝛽𝛽 + 𝛾𝛾 = 0, then, to calculate 𝐵𝐵(𝑋𝑋 ≥ 𝑌𝑌), coefficients 𝛽𝛽, 𝛾𝛾 can be replaced with 
any positive number; 

- if 𝑚𝑚 = 𝑛𝑛, 𝛼𝛼 + 𝛿𝛿 = 0, then, to calculate 𝐻𝐻(𝑋𝑋 > 𝑌𝑌), coefficients 𝛼𝛼, 𝛿𝛿 can be replaced with 
any positive number; 

- if 𝑚𝑚 = 𝑛𝑛, 𝛼𝛼 + 𝛾𝛾 = 0, then 𝐻𝐻(𝑋𝑋 ≥ 𝑌𝑌) = 0; 

- if 𝑚𝑚 = 𝑛𝑛, 𝛽𝛽 + 𝛿𝛿 = 0, then 𝐵𝐵(𝑋𝑋 > 𝑌𝑌) = 0. 

𝑡𝑡21 = (3, 5, 1, 1); 𝑡𝑡32 = (2, 4, 1, 1); 43 = 2, 4, 1, 1;  𝑡𝑡54 = 3, 5, 1, 1.  

𝐹𝐹(𝑁𝑁1) ∑((𝑐𝑐𝑚𝑚)𝑖𝑖𝑖𝑖𝑛𝑛𝑖𝑖𝑖𝑖 + 𝑃𝑃𝑖𝑖𝑖𝑖𝑡𝑡𝑖𝑖𝑖𝑖
𝛴𝛴 ) = (4900, 5100, 25, 25) + (5452, 11484, 2333, 2973)

𝑖𝑖,𝑖𝑖
= (10352, 16352, 2958, 2998) 

 

𝜆𝜆1 = 𝜆𝜆(𝐺𝐺1) = ∑(𝑐𝑐𝑚𝑚)𝑖𝑖𝑖𝑖𝑛𝑛𝑖𝑖𝑖𝑖
𝑖𝑖,𝑖𝑖

(𝑁𝑁1) + ∑ 𝑃𝑃𝑖𝑖𝑖𝑖𝑡𝑡𝑖𝑖𝑖𝑖
𝛴𝛴

𝑖𝑖,𝑖𝑖
(𝑁𝑁1 ∪ �̃�𝑁1) = (4900, 5100, 25, 25). 

 
 

𝜆𝜆2 = 𝜆𝜆(𝐺𝐺2) = ∑(𝑐𝑐𝑚𝑚)𝑖𝑖𝑖𝑖𝑛𝑛𝑖𝑖𝑖𝑖
𝑖𝑖,𝑖𝑖

(𝑁𝑁2) + ∑ 𝑃𝑃𝑖𝑖𝑖𝑖𝑡𝑡𝑖𝑖𝑖𝑖
𝛴𝛴

𝑖𝑖,𝑖𝑖
(𝑁𝑁2 ∪ �̃�𝑁2) = (6020, 6480, 102, 130) 

Step one. We define the possible sets contain-
ing OD pairs included in vertex 1 and OD pairs 
sequentially added to them, from among the OD 
pairs belonging to vertex 1. Through branching, 

Figure 3. Region of a railway network

Table 1. Wagon flows
Pij 1 2 3 4 5 6

1 - 100, 100, 0, 0 180, 220, 10, 10 75, 85, 2, 2 90, 110, 5, 5 190, 210, 2, 2

2 - - 100, 100, 0, 0 270, 330, 10, 10 18, 22, 2, 2 70, 90, 2, 2

3 - - - 100, 100, 0, 0 18, 22, 2, 2 145, 155, 5, 5

4 - - - - 100, 100, 0, 0 48, 52, 2, 2

5 - - - - - 100, 100, 0, 0

6 - - - - - -
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Table 2. Value of objective function and dominance indices for vertex 1

Table 3. Value of objective function and dominance indices for vertex 2

Figure 4. Solution tree

(𝑖𝑖, 𝑗𝑗) Values 𝐹𝐹(𝑁𝑁1 ∪ (𝑖𝑖, 𝑗𝑗)) 
Dominance indices 

𝐵𝐵(𝑋𝑋 ≥ 𝑌𝑌) 𝐻𝐻(𝑋𝑋 ≥ 𝑌𝑌) 𝐵𝐵(𝑋𝑋 > 𝑌𝑌) 𝐻𝐻(𝑋𝑋 > 𝑌𝑌) 
(1,3) (9727, 141479, 1790, 2264) 1 0.582 0.969 0 

(1,4) (9557, 13959, 1626, 2094) 1 0.608 1 0 

(1,5) (9372, 13444, 1495, 1931) 1 0.642 1 0 

(1,6) (9432, 13824, 1591, 2049) 1 0.672 1 0 

(2,4) (9906, 14216, 1627, 2041) 1 0.520 1 0 

(2,5) (9860, 14148, 1605, 2029) 1 0.529 1 0 

(2,6) (9512, 13704, 1567, 2039) 1 0.613 1 0 

(3,5) (10270, 15168, 1814, 2304) 1 0.454 0.832 0 

(3,6) (9307, 13509, 1525, 1994) 1 0.662 1 0 

(4,6) (9973, 15069, 1888, 2430) 1 0.534 0.831 0 
` 

(𝑖𝑖, 𝑗𝑗) Values 𝐹𝐹(𝑁𝑁2 ∪ (𝑖𝑖, 𝑗𝑗)) 
Dominance indices 

𝐵𝐵(𝑋𝑋 ≥ 𝑌𝑌) 𝐻𝐻(𝑋𝑋 ≥ 𝑌𝑌) 𝐵𝐵(𝑋𝑋 > 𝑌𝑌) 𝐻𝐻(𝑋𝑋 > 𝑌𝑌) 
(1,4) (9997, 13879, 1431, 1819) 1 0.360 0.701 0 

(1,5) (9587, 12939, 1221, 1559) 1 0.452 0.995 0 

(1,6) (9017, 11889, 1027, 1337) 1 0.617 1 0 

(2,4) (9991, 13731, 1423, 1757) 1 0.361 0.749 0 

(2,5) (10071, 13643, 1331, 1657) 1 0.314 0.791 0 

(2,6) (12512, 15190, 2061, 2439) 1 0.227 0.274 0 

(3,5) (9645, 13063, 1246, 1507) 1 0.437 0.960 0 

(3,6) (8862, 11404, 958, 1260) 1 0.729 1 0 

(4,6) (9418, 13054, 1322, 1698) 1 0.545 0.731 0 
 
 
 

 

𝐹𝐹(𝑁𝑁1) ∑((𝑐𝑐𝑐𝑐)𝑖𝑖𝑖𝑖𝑛𝑛𝑖𝑖𝑖𝑖 + 𝑃𝑃𝑖𝑖𝑖𝑖𝑡𝑡𝑖𝑖𝑖𝑖
𝛴𝛴 ) = (4900, 5100, 25, 25) + (5452, 11484, 2333, 2973)

𝑖𝑖,𝑖𝑖
= (10352, 16352, 2958, 2998) 

Then, we created all possible sets of type 𝐵𝐵(𝑋𝑋 ≥ 𝑌𝑌) and determine the values of the objective function 
for them. The results of these calculations are shown in Table 2. 
 
The data in Table 2 demonstrate that at step zero, all OD pairs satisfy the necessary condition. 
The dominance indices show that: 
- at index values higher than 0.5, interval X is significantly larger than interval Y; 
- at H-index values 𝐻𝐻(𝑋𝑋 ≥ 𝑌𝑌) > 0,3 and B-index values 𝐵𝐵(𝑋𝑋 > 𝑌𝑌) > 0,7, interval X is significantly 
larger than interval Y. 
Index values 𝐻𝐻(𝑋𝑋 > 𝑌𝑌) = 0 𝑖𝑖 𝐵𝐵(𝑋𝑋 ≥ 𝑌𝑌) = 1 mean that intervals X and Y partly or fully overlap. 
Formulated in this way, vertex 1 of Fig. 4 contains the following OD pairs (1,3), (1,4), (1,5), (1,6), (2,4), 
(2,5), (2,6), (3,5), (3,6), (4,6). 
 
Step one. We define the possible sets containing OD pairs included in vertex 1 and OD pairs sequentially 
added to them, from among the OD pairs belonging to vertex 1. Through branching, we obtain vertices 
2–11 of the solution tree (Fig. 4) We define the sets of OD pairs for each vertex: 
Vertex 2 
The value of the objective function for the set of OD pairs included in 𝑁𝑁2 in vertex 2 is: 
𝐹𝐹(𝑁𝑁2) ∑ ((𝑐𝑐𝑐𝑐)𝑖𝑖𝑖𝑖𝑛𝑛𝑖𝑖𝑖𝑖 + 𝑃𝑃𝑖𝑖𝑖𝑖𝑡𝑡𝑖𝑖𝑖𝑖

𝛴𝛴 ) = (9727, 14479, 1790, 2264)𝑖𝑖,𝑖𝑖 , 𝑔𝑔𝑔𝑔𝑔𝑔𝑖𝑖𝑔𝑔 𝑁𝑁2 = 𝑁𝑁1 ∪ (1,3). 
When building the set of OD pairs �̃�𝑁2, we check whether the OD pairs of set �̃�𝑁1, not included in set 𝑁𝑁2, 
satisfy the optimality condition (3). To this end, we create all possible sets of type 𝜆𝜆 > 𝜆𝜆13 and determine 
the values of the objective function for them. Table 3 shows the results of these calculations for vertex 
2. 
Figure 4. Solution tree 
It follows from Table 3 that the OD pair (2,6) does not satisfy the necessary condition, and so set �̃�𝑁2 
contains the following OD pairs (1,4), (1,5), (1,6), (2,4), (2,5), (2,6), (3,5), (3,6), (4,6). The estimate 
value is: 

𝜆𝜆2 = 𝜆𝜆(𝐺𝐺2) = ∑(𝑐𝑐𝑐𝑐)𝑖𝑖𝑖𝑖𝑛𝑛𝑖𝑖𝑖𝑖
𝑖𝑖,𝑖𝑖

(𝑁𝑁2) + ∑ 𝑃𝑃𝑖𝑖𝑖𝑖𝑡𝑡𝑖𝑖𝑖𝑖
𝛴𝛴

𝑖𝑖,𝑖𝑖
(𝑁𝑁2 ∪ �̃�𝑁2) = (6020, 6480, 102, 130) 
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we obtain vertices 2–11 of the solution tree (Fig. 
4) We define the sets of OD pairs for each vertex:
Vertex 2

The value of the objective function for the set 
of OD pairs included in N2 in vertex 2 is:

 

 

𝐹𝐹(𝑁𝑁1) ∑((𝑐𝑐𝑐𝑐)𝑖𝑖𝑖𝑖𝑛𝑛𝑖𝑖𝑖𝑖 + 𝑃𝑃𝑖𝑖𝑖𝑖𝑡𝑡𝑖𝑖𝑖𝑖
𝛴𝛴 ) = (4900, 5100, 25, 25) + (5452, 11484, 2333, 2973)

𝑖𝑖,𝑖𝑖
= (10352, 16352, 2958, 2998) 

Then, we created all possible sets of type 𝐵𝐵(𝑋𝑋 ≥ 𝑌𝑌) and determine the values of the objective function 
for them. The results of these calculations are shown in Table 2. 
 
The data in Table 2 demonstrate that at step zero, all OD pairs satisfy the necessary condition. 
The dominance indices show that: 
- at index values higher than 0.5, interval X is significantly larger than interval Y; 
- at H-index values 𝐻𝐻(𝑋𝑋 ≥ 𝑌𝑌) > 0,3 and B-index values 𝐵𝐵(𝑋𝑋 > 𝑌𝑌) > 0,7, interval X is significantly 
larger than interval Y. 
Index values 𝐻𝐻(𝑋𝑋 > 𝑌𝑌) = 0 𝑖𝑖 𝐵𝐵(𝑋𝑋 ≥ 𝑌𝑌) = 1 mean that intervals X and Y partly or fully overlap. 
Formulated in this way, vertex 1 of Fig. 4 contains the following OD pairs (1,3), (1,4), (1,5), (1,6), (2,4), 
(2,5), (2,6), (3,5), (3,6), (4,6). 
 
Step one. We define the possible sets containing OD pairs included in vertex 1 and OD pairs sequentially 
added to them, from among the OD pairs belonging to vertex 1. Through branching, we obtain vertices 
2–11 of the solution tree (Fig. 4) We define the sets of OD pairs for each vertex: 
Vertex 2 
The value of the objective function for the set of OD pairs included in 𝑁𝑁2 in vertex 2 is: 
𝐹𝐹(𝑁𝑁2) ∑ ((𝑐𝑐𝑐𝑐)𝑖𝑖𝑖𝑖𝑛𝑛𝑖𝑖𝑖𝑖 + 𝑃𝑃𝑖𝑖𝑖𝑖𝑡𝑡𝑖𝑖𝑖𝑖

𝛴𝛴 ) = (9727, 14479, 1790, 2264)𝑖𝑖,𝑖𝑖 , 𝑔𝑔𝑔𝑔𝑔𝑔𝑖𝑖𝑔𝑔 𝑁𝑁2 = 𝑁𝑁1 ∪ (1,3). 
When building the set of OD pairs �̃�𝑁2, we check whether the OD pairs of set �̃�𝑁1, not included in set 𝑁𝑁2, 
satisfy the optimality condition (3). To this end, we create all possible sets of type 𝜆𝜆 > 𝜆𝜆13 and determine 
the values of the objective function for them. Table 3 shows the results of these calculations for vertex 
2. 
Figure 4. Solution tree 
It follows from Table 3 that the OD pair (2,6) does not satisfy the necessary condition, and so set �̃�𝑁2 
contains the following OD pairs (1,4), (1,5), (1,6), (2,4), (2,5), (2,6), (3,5), (3,6), (4,6). The estimate 
value is: 

𝜆𝜆2 = 𝜆𝜆(𝐺𝐺2) = ∑(𝑐𝑐𝑐𝑐)𝑖𝑖𝑖𝑖𝑛𝑛𝑖𝑖𝑖𝑖
𝑖𝑖,𝑖𝑖

(𝑁𝑁2) + ∑ 𝑃𝑃𝑖𝑖𝑖𝑖𝑡𝑡𝑖𝑖𝑖𝑖
𝛴𝛴

𝑖𝑖,𝑖𝑖
(𝑁𝑁2 ∪ �̃�𝑁2) = (6020, 6480, 102, 130) 

 

 

𝐹𝐹(𝑁𝑁1) ∑((𝑐𝑐𝑐𝑐)𝑖𝑖𝑖𝑖𝑛𝑛𝑖𝑖𝑖𝑖 + 𝑃𝑃𝑖𝑖𝑖𝑖𝑡𝑡𝑖𝑖𝑖𝑖
𝛴𝛴 ) = (4900, 5100, 25, 25) + (5452, 11484, 2333, 2973)

𝑖𝑖,𝑖𝑖
= (10352, 16352, 2958, 2998) 

Then, we created all possible sets of type 𝐵𝐵(𝑋𝑋 ≥ 𝑌𝑌) and determine the values of the objective function 
for them. The results of these calculations are shown in Table 2. 
 
The data in Table 2 demonstrate that at step zero, all OD pairs satisfy the necessary condition. 
The dominance indices show that: 
- at index values higher than 0.5, interval X is significantly larger than interval Y; 
- at H-index values 𝐻𝐻(𝑋𝑋 ≥ 𝑌𝑌) > 0,3 and B-index values 𝐵𝐵(𝑋𝑋 > 𝑌𝑌) > 0,7, interval X is significantly 
larger than interval Y. 
Index values 𝐻𝐻(𝑋𝑋 > 𝑌𝑌) = 0 𝑖𝑖 𝐵𝐵(𝑋𝑋 ≥ 𝑌𝑌) = 1 mean that intervals X and Y partly or fully overlap. 
Formulated in this way, vertex 1 of Fig. 4 contains the following OD pairs (1,3), (1,4), (1,5), (1,6), (2,4), 
(2,5), (2,6), (3,5), (3,6), (4,6). 
 
Step one. We define the possible sets containing OD pairs included in vertex 1 and OD pairs sequentially 
added to them, from among the OD pairs belonging to vertex 1. Through branching, we obtain vertices 
2–11 of the solution tree (Fig. 4) We define the sets of OD pairs for each vertex: 
Vertex 2 
The value of the objective function for the set of OD pairs included in 𝑁𝑁2 in vertex 2 is: 
𝐹𝐹(𝑁𝑁2) ∑ ((𝑐𝑐𝑐𝑐)𝑖𝑖𝑖𝑖𝑛𝑛𝑖𝑖𝑖𝑖 + 𝑃𝑃𝑖𝑖𝑖𝑖𝑡𝑡𝑖𝑖𝑖𝑖

𝛴𝛴 ) = (9727, 14479, 1790, 2264)𝑖𝑖,𝑖𝑖 , 𝑔𝑔𝑔𝑔𝑔𝑔𝑖𝑖𝑔𝑔 𝑁𝑁2 = 𝑁𝑁1 ∪ (1,3). 
When building the set of OD pairs �̃�𝑁2, we check whether the OD pairs of set �̃�𝑁1, not included in set 𝑁𝑁2, 
satisfy the optimality condition (3). To this end, we create all possible sets of type 𝜆𝜆 > 𝜆𝜆13 and determine 
the values of the objective function for them. Table 3 shows the results of these calculations for vertex 
2. 
Figure 4. Solution tree 
It follows from Table 3 that the OD pair (2,6) does not satisfy the necessary condition, and so set �̃�𝑁2 
contains the following OD pairs (1,4), (1,5), (1,6), (2,4), (2,5), (2,6), (3,5), (3,6), (4,6). The estimate 
value is: 

𝜆𝜆2 = 𝜆𝜆(𝐺𝐺2) = ∑(𝑐𝑐𝑐𝑐)𝑖𝑖𝑖𝑖𝑛𝑛𝑖𝑖𝑖𝑖
𝑖𝑖,𝑖𝑖

(𝑁𝑁2) + ∑ 𝑃𝑃𝑖𝑖𝑖𝑖𝑡𝑡𝑖𝑖𝑖𝑖
𝛴𝛴

𝑖𝑖,𝑖𝑖
(𝑁𝑁2 ∪ �̃�𝑁2) = (6020, 6480, 102, 130) 

where:  

 

𝐹𝐹(𝑁𝑁1) ∑((𝑐𝑐𝑐𝑐)𝑖𝑖𝑖𝑖𝑛𝑛𝑖𝑖𝑖𝑖 + 𝑃𝑃𝑖𝑖𝑖𝑖𝑡𝑡𝑖𝑖𝑖𝑖
𝛴𝛴 ) = (4900, 5100, 25, 25) + (5452, 11484, 2333, 2973)

𝑖𝑖,𝑖𝑖
= (10352, 16352, 2958, 2998) 

Then, we created all possible sets of type 𝐵𝐵(𝑋𝑋 ≥ 𝑌𝑌) and determine the values of the objective function 
for them. The results of these calculations are shown in Table 2. 
 
The data in Table 2 demonstrate that at step zero, all OD pairs satisfy the necessary condition. 
The dominance indices show that: 
- at index values higher than 0.5, interval X is significantly larger than interval Y; 
- at H-index values 𝐻𝐻(𝑋𝑋 ≥ 𝑌𝑌) > 0,3 and B-index values 𝐵𝐵(𝑋𝑋 > 𝑌𝑌) > 0,7, interval X is significantly 
larger than interval Y. 
Index values 𝐻𝐻(𝑋𝑋 > 𝑌𝑌) = 0 𝑖𝑖 𝐵𝐵(𝑋𝑋 ≥ 𝑌𝑌) = 1 mean that intervals X and Y partly or fully overlap. 
Formulated in this way, vertex 1 of Fig. 4 contains the following OD pairs (1,3), (1,4), (1,5), (1,6), (2,4), 
(2,5), (2,6), (3,5), (3,6), (4,6). 
 
Step one. We define the possible sets containing OD pairs included in vertex 1 and OD pairs sequentially 
added to them, from among the OD pairs belonging to vertex 1. Through branching, we obtain vertices 
2–11 of the solution tree (Fig. 4) We define the sets of OD pairs for each vertex: 
Vertex 2 
The value of the objective function for the set of OD pairs included in 𝑁𝑁2 in vertex 2 is: 
𝐹𝐹(𝑁𝑁2) ∑ ((𝑐𝑐𝑐𝑐)𝑖𝑖𝑖𝑖𝑛𝑛𝑖𝑖𝑖𝑖 + 𝑃𝑃𝑖𝑖𝑖𝑖𝑡𝑡𝑖𝑖𝑖𝑖

𝛴𝛴 ) = (9727, 14479, 1790, 2264)𝑖𝑖,𝑖𝑖 , 𝑔𝑔𝑔𝑔𝑔𝑔𝑖𝑖𝑔𝑔 𝑁𝑁2 = 𝑁𝑁1 ∪ (1,3). 
When building the set of OD pairs �̃�𝑁2, we check whether the OD pairs of set �̃�𝑁1, not included in set 𝑁𝑁2, 
satisfy the optimality condition (3). To this end, we create all possible sets of type 𝜆𝜆 > 𝜆𝜆13 and determine 
the values of the objective function for them. Table 3 shows the results of these calculations for vertex 
2. 
Figure 4. Solution tree 
It follows from Table 3 that the OD pair (2,6) does not satisfy the necessary condition, and so set �̃�𝑁2 
contains the following OD pairs (1,4), (1,5), (1,6), (2,4), (2,5), (2,6), (3,5), (3,6), (4,6). The estimate 
value is: 

𝜆𝜆2 = 𝜆𝜆(𝐺𝐺2) = ∑(𝑐𝑐𝑐𝑐)𝑖𝑖𝑖𝑖𝑛𝑛𝑖𝑖𝑖𝑖
𝑖𝑖,𝑖𝑖

(𝑁𝑁2) + ∑ 𝑃𝑃𝑖𝑖𝑖𝑖𝑡𝑡𝑖𝑖𝑖𝑖
𝛴𝛴

𝑖𝑖,𝑖𝑖
(𝑁𝑁2 ∪ �̃�𝑁2) = (6020, 6480, 102, 130) 

When building the set of OD pairs 

 

𝐹𝐹(𝑁𝑁1) ∑((𝑐𝑐𝑐𝑐)𝑖𝑖𝑖𝑖𝑛𝑛𝑖𝑖𝑖𝑖 + 𝑃𝑃𝑖𝑖𝑖𝑖𝑡𝑡𝑖𝑖𝑖𝑖
𝛴𝛴 ) = (4900, 5100, 25, 25) + (5452, 11484, 2333, 2973)

𝑖𝑖,𝑖𝑖
= (10352, 16352, 2958, 2998) 

Then, we created all possible sets of type 𝐵𝐵(𝑋𝑋 ≥ 𝑌𝑌) and determine the values of the objective function 
for them. The results of these calculations are shown in Table 2. 
 
The data in Table 2 demonstrate that at step zero, all OD pairs satisfy the necessary condition. 
The dominance indices show that: 
- at index values higher than 0.5, interval X is significantly larger than interval Y; 
- at H-index values 𝐻𝐻(𝑋𝑋 ≥ 𝑌𝑌) > 0,3 and B-index values 𝐵𝐵(𝑋𝑋 > 𝑌𝑌) > 0,7, interval X is significantly 
larger than interval Y. 
Index values 𝐻𝐻(𝑋𝑋 > 𝑌𝑌) = 0 𝑖𝑖 𝐵𝐵(𝑋𝑋 ≥ 𝑌𝑌) = 1 mean that intervals X and Y partly or fully overlap. 
Formulated in this way, vertex 1 of Fig. 4 contains the following OD pairs (1,3), (1,4), (1,5), (1,6), (2,4), 
(2,5), (2,6), (3,5), (3,6), (4,6). 
 
Step one. We define the possible sets containing OD pairs included in vertex 1 and OD pairs sequentially 
added to them, from among the OD pairs belonging to vertex 1. Through branching, we obtain vertices 
2–11 of the solution tree (Fig. 4) We define the sets of OD pairs for each vertex: 
Vertex 2 
The value of the objective function for the set of OD pairs included in 𝑁𝑁2 in vertex 2 is: 
𝐹𝐹(𝑁𝑁2) ∑ ((𝑐𝑐𝑐𝑐)𝑖𝑖𝑖𝑖𝑛𝑛𝑖𝑖𝑖𝑖 + 𝑃𝑃𝑖𝑖𝑖𝑖𝑡𝑡𝑖𝑖𝑖𝑖

𝛴𝛴 ) = (9727, 14479, 1790, 2264)𝑖𝑖,𝑖𝑖 , 𝑔𝑔𝑔𝑔𝑔𝑔𝑖𝑖𝑔𝑔 𝑁𝑁2 = 𝑁𝑁1 ∪ (1,3). 
When building the set of OD pairs �̃�𝑁2, we check whether the OD pairs of set �̃�𝑁1, not included in set 𝑁𝑁2, 
satisfy the optimality condition (3). To this end, we create all possible sets of type 𝜆𝜆 > 𝜆𝜆13 and determine 
the values of the objective function for them. Table 3 shows the results of these calculations for vertex 
2. 
Figure 4. Solution tree 
It follows from Table 3 that the OD pair (2,6) does not satisfy the necessary condition, and so set �̃�𝑁2 
contains the following OD pairs (1,4), (1,5), (1,6), (2,4), (2,5), (2,6), (3,5), (3,6), (4,6). The estimate 
value is: 

𝜆𝜆2 = 𝜆𝜆(𝐺𝐺2) = ∑(𝑐𝑐𝑐𝑐)𝑖𝑖𝑖𝑖𝑛𝑛𝑖𝑖𝑖𝑖
𝑖𝑖,𝑖𝑖

(𝑁𝑁2) + ∑ 𝑃𝑃𝑖𝑖𝑖𝑖𝑡𝑡𝑖𝑖𝑖𝑖
𝛴𝛴

𝑖𝑖,𝑖𝑖
(𝑁𝑁2 ∪ �̃�𝑁2) = (6020, 6480, 102, 130) 

, we 
check whether the OD pairs of set 

 

𝐹𝐹(𝑁𝑁1) ∑((𝑐𝑐𝑐𝑐)𝑖𝑖𝑖𝑖𝑛𝑛𝑖𝑖𝑖𝑖 + 𝑃𝑃𝑖𝑖𝑖𝑖𝑡𝑡𝑖𝑖𝑖𝑖
𝛴𝛴 ) = (4900, 5100, 25, 25) + (5452, 11484, 2333, 2973)

𝑖𝑖,𝑖𝑖
= (10352, 16352, 2958, 2998) 

Then, we created all possible sets of type 𝐵𝐵(𝑋𝑋 ≥ 𝑌𝑌) and determine the values of the objective function 
for them. The results of these calculations are shown in Table 2. 
 
The data in Table 2 demonstrate that at step zero, all OD pairs satisfy the necessary condition. 
The dominance indices show that: 
- at index values higher than 0.5, interval X is significantly larger than interval Y; 
- at H-index values 𝐻𝐻(𝑋𝑋 ≥ 𝑌𝑌) > 0,3 and B-index values 𝐵𝐵(𝑋𝑋 > 𝑌𝑌) > 0,7, interval X is significantly 
larger than interval Y. 
Index values 𝐻𝐻(𝑋𝑋 > 𝑌𝑌) = 0 𝑖𝑖 𝐵𝐵(𝑋𝑋 ≥ 𝑌𝑌) = 1 mean that intervals X and Y partly or fully overlap. 
Formulated in this way, vertex 1 of Fig. 4 contains the following OD pairs (1,3), (1,4), (1,5), (1,6), (2,4), 
(2,5), (2,6), (3,5), (3,6), (4,6). 
 
Step one. We define the possible sets containing OD pairs included in vertex 1 and OD pairs sequentially 
added to them, from among the OD pairs belonging to vertex 1. Through branching, we obtain vertices 
2–11 of the solution tree (Fig. 4) We define the sets of OD pairs for each vertex: 
Vertex 2 
The value of the objective function for the set of OD pairs included in 𝑁𝑁2 in vertex 2 is: 
𝐹𝐹(𝑁𝑁2) ∑ ((𝑐𝑐𝑐𝑐)𝑖𝑖𝑖𝑖𝑛𝑛𝑖𝑖𝑖𝑖 + 𝑃𝑃𝑖𝑖𝑖𝑖𝑡𝑡𝑖𝑖𝑖𝑖

𝛴𝛴 ) = (9727, 14479, 1790, 2264)𝑖𝑖,𝑖𝑖 , 𝑔𝑔𝑔𝑔𝑔𝑔𝑖𝑖𝑔𝑔 𝑁𝑁2 = 𝑁𝑁1 ∪ (1,3). 
When building the set of OD pairs �̃�𝑁2, we check whether the OD pairs of set �̃�𝑁1, not included in set 𝑁𝑁2, 
satisfy the optimality condition (3). To this end, we create all possible sets of type 𝜆𝜆 > 𝜆𝜆13 and determine 
the values of the objective function for them. Table 3 shows the results of these calculations for vertex 
2. 
Figure 4. Solution tree 
It follows from Table 3 that the OD pair (2,6) does not satisfy the necessary condition, and so set �̃�𝑁2 
contains the following OD pairs (1,4), (1,5), (1,6), (2,4), (2,5), (2,6), (3,5), (3,6), (4,6). The estimate 
value is: 

𝜆𝜆2 = 𝜆𝜆(𝐺𝐺2) = ∑(𝑐𝑐𝑐𝑐)𝑖𝑖𝑖𝑖𝑛𝑛𝑖𝑖𝑖𝑖
𝑖𝑖,𝑖𝑖

(𝑁𝑁2) + ∑ 𝑃𝑃𝑖𝑖𝑖𝑖𝑡𝑡𝑖𝑖𝑖𝑖
𝛴𝛴

𝑖𝑖,𝑖𝑖
(𝑁𝑁2 ∪ �̃�𝑁2) = (6020, 6480, 102, 130) 

 not includ-
ed in set N2, satisfy the optimality condition (3). 
To this end, we create all possible sets of type λ > 
λ13 and determine the values of the objective func-
tion for them. Table 3 shows the results of these 
calculations for vertex 2.

It follows from Table 3 that the OD pair (2,6) 
does not satisfy the necessary condition, and so 
set 

 

𝐹𝐹(𝑁𝑁1) ∑((𝑐𝑐𝑐𝑐)𝑖𝑖𝑖𝑖𝑛𝑛𝑖𝑖𝑖𝑖 + 𝑃𝑃𝑖𝑖𝑖𝑖𝑡𝑡𝑖𝑖𝑖𝑖
𝛴𝛴 ) = (4900, 5100, 25, 25) + (5452, 11484, 2333, 2973)

𝑖𝑖,𝑖𝑖
= (10352, 16352, 2958, 2998) 

Then, we created all possible sets of type 𝐵𝐵(𝑋𝑋 ≥ 𝑌𝑌) and determine the values of the objective function 
for them. The results of these calculations are shown in Table 2. 
 
The data in Table 2 demonstrate that at step zero, all OD pairs satisfy the necessary condition. 
The dominance indices show that: 
- at index values higher than 0.5, interval X is significantly larger than interval Y; 
- at H-index values 𝐻𝐻(𝑋𝑋 ≥ 𝑌𝑌) > 0,3 and B-index values 𝐵𝐵(𝑋𝑋 > 𝑌𝑌) > 0,7, interval X is significantly 
larger than interval Y. 
Index values 𝐻𝐻(𝑋𝑋 > 𝑌𝑌) = 0 𝑖𝑖 𝐵𝐵(𝑋𝑋 ≥ 𝑌𝑌) = 1 mean that intervals X and Y partly or fully overlap. 
Formulated in this way, vertex 1 of Fig. 4 contains the following OD pairs (1,3), (1,4), (1,5), (1,6), (2,4), 
(2,5), (2,6), (3,5), (3,6), (4,6). 
 
Step one. We define the possible sets containing OD pairs included in vertex 1 and OD pairs sequentially 
added to them, from among the OD pairs belonging to vertex 1. Through branching, we obtain vertices 
2–11 of the solution tree (Fig. 4) We define the sets of OD pairs for each vertex: 
Vertex 2 
The value of the objective function for the set of OD pairs included in 𝑁𝑁2 in vertex 2 is: 
𝐹𝐹(𝑁𝑁2) ∑ ((𝑐𝑐𝑐𝑐)𝑖𝑖𝑖𝑖𝑛𝑛𝑖𝑖𝑖𝑖 + 𝑃𝑃𝑖𝑖𝑖𝑖𝑡𝑡𝑖𝑖𝑖𝑖

𝛴𝛴 ) = (9727, 14479, 1790, 2264)𝑖𝑖,𝑖𝑖 , 𝑔𝑔𝑔𝑔𝑔𝑔𝑖𝑖𝑔𝑔 𝑁𝑁2 = 𝑁𝑁1 ∪ (1,3). 
When building the set of OD pairs �̃�𝑁2, we check whether the OD pairs of set �̃�𝑁1, not included in set 𝑁𝑁2, 
satisfy the optimality condition (3). To this end, we create all possible sets of type 𝜆𝜆 > 𝜆𝜆13 and determine 
the values of the objective function for them. Table 3 shows the results of these calculations for vertex 
2. 
Figure 4. Solution tree 
It follows from Table 3 that the OD pair (2,6) does not satisfy the necessary condition, and so set �̃�𝑁2 
contains the following OD pairs (1,4), (1,5), (1,6), (2,4), (2,5), (2,6), (3,5), (3,6), (4,6). The estimate 
value is: 

𝜆𝜆2 = 𝜆𝜆(𝐺𝐺2) = ∑(𝑐𝑐𝑐𝑐)𝑖𝑖𝑖𝑖𝑛𝑛𝑖𝑖𝑖𝑖
𝑖𝑖,𝑖𝑖

(𝑁𝑁2) + ∑ 𝑃𝑃𝑖𝑖𝑖𝑖𝑡𝑡𝑖𝑖𝑖𝑖
𝛴𝛴

𝑖𝑖,𝑖𝑖
(𝑁𝑁2 ∪ �̃�𝑁2) = (6020, 6480, 102, 130) 

 contains the following OD pairs (1,4), 
(1,5), (1,6), (2,4), (2,5), (2,6), (3,5), (3,6), (4,6). 
The estimate value is:

 

1 
 

 

 

 𝐵𝐵(𝑋𝑋 ≥ 𝑌𝑌) = max (0, min (1, 1 + (𝑚𝑚 − 𝑛𝑛)/(𝛽𝛽 + 𝛾𝛾))) (8) 
 

 

 𝐻𝐻(𝑋𝑋 ≥ 𝑌𝑌) = max (0, min (1, (𝑚𝑚 − 𝑛𝑛 + 𝛾𝛾)/(𝛼𝛼 + 𝛾𝛾))) (9) 

 

 𝐵𝐵(𝑋𝑋 > 𝑌𝑌) = max (0, min(1, (𝑚𝑚 − 𝑛𝑛 + 𝛽𝛽)/(𝛽𝛽 + 𝛿𝛿))) (10) 

 

 𝐻𝐻(𝑋𝑋 > 𝑌𝑌) = max (0, min (1, (𝑚𝑚 − 𝑛𝑛)/(𝛼𝛼 + 𝛿𝛿))) (11) 
 

- if 𝑚𝑚 = 𝑛𝑛, 𝛽𝛽 + 𝛾𝛾 = 0, then, to calculate 𝐵𝐵(𝑋𝑋 ≥ 𝑌𝑌), coefficients 𝛽𝛽, 𝛾𝛾 can be replaced with 
any positive number; 

- if 𝑚𝑚 = 𝑛𝑛, 𝛼𝛼 + 𝛿𝛿 = 0, then, to calculate 𝐻𝐻(𝑋𝑋 > 𝑌𝑌), coefficients 𝛼𝛼, 𝛿𝛿 can be replaced with 
any positive number; 

- if 𝑚𝑚 = 𝑛𝑛, 𝛼𝛼 + 𝛾𝛾 = 0, then 𝐻𝐻(𝑋𝑋 ≥ 𝑌𝑌) = 0; 

- if 𝑚𝑚 = 𝑛𝑛, 𝛽𝛽 + 𝛿𝛿 = 0, then 𝐵𝐵(𝑋𝑋 > 𝑌𝑌) = 0. 

𝑡𝑡21 = (3, 5, 1, 1); 𝑡𝑡32 = (2, 4, 1, 1); 43 = 2, 4, 1, 1;  𝑡𝑡54 = 3, 5, 1, 1.  

𝐹𝐹(𝑁𝑁1) ∑((𝑐𝑐𝑚𝑚)𝑖𝑖𝑖𝑖𝑛𝑛𝑖𝑖𝑖𝑖 + 𝑃𝑃𝑖𝑖𝑖𝑖𝑡𝑡𝑖𝑖𝑖𝑖
𝛴𝛴 ) = (4900, 5100, 25, 25) + (5452, 11484, 2333, 2973)

𝑖𝑖,𝑖𝑖
= (10352, 16352, 2958, 2998) 

 

𝜆𝜆1 = 𝜆𝜆(𝐺𝐺1) = ∑(𝑐𝑐𝑚𝑚)𝑖𝑖𝑖𝑖𝑛𝑛𝑖𝑖𝑖𝑖
𝑖𝑖,𝑖𝑖

(𝑁𝑁1) + ∑ 𝑃𝑃𝑖𝑖𝑖𝑖𝑡𝑡𝑖𝑖𝑖𝑖
𝛴𝛴

𝑖𝑖,𝑖𝑖
(𝑁𝑁1 ∪ �̃�𝑁1) = (4900, 5100, 25, 25). 

 
 

𝜆𝜆2 = 𝜆𝜆(𝐺𝐺2) = ∑(𝑐𝑐𝑚𝑚)𝑖𝑖𝑖𝑖𝑛𝑛𝑖𝑖𝑖𝑖
𝑖𝑖,𝑖𝑖

(𝑁𝑁2) + ∑ 𝑃𝑃𝑖𝑖𝑖𝑖𝑡𝑡𝑖𝑖𝑖𝑖
𝛴𝛴

𝑖𝑖,𝑖𝑖
(𝑁𝑁2 ∪ �̃�𝑁2) = (6020, 6480, 102, 130) 

 

1 
 

 

 

 𝐵𝐵(𝑋𝑋 ≥ 𝑌𝑌) = max (0, min (1, 1 + (𝑚𝑚 − 𝑛𝑛)/(𝛽𝛽 + 𝛾𝛾))) (8) 
 

 

 𝐻𝐻(𝑋𝑋 ≥ 𝑌𝑌) = max (0, min (1, (𝑚𝑚 − 𝑛𝑛 + 𝛾𝛾)/(𝛼𝛼 + 𝛾𝛾))) (9) 

 

 𝐵𝐵(𝑋𝑋 > 𝑌𝑌) = max (0, min(1, (𝑚𝑚 − 𝑛𝑛 + 𝛽𝛽)/(𝛽𝛽 + 𝛿𝛿))) (10) 

 

 𝐻𝐻(𝑋𝑋 > 𝑌𝑌) = max (0, min (1, (𝑚𝑚 − 𝑛𝑛)/(𝛼𝛼 + 𝛿𝛿))) (11) 
 

- if 𝑚𝑚 = 𝑛𝑛, 𝛽𝛽 + 𝛾𝛾 = 0, then, to calculate 𝐵𝐵(𝑋𝑋 ≥ 𝑌𝑌), coefficients 𝛽𝛽, 𝛾𝛾 can be replaced with 
any positive number; 

- if 𝑚𝑚 = 𝑛𝑛, 𝛼𝛼 + 𝛿𝛿 = 0, then, to calculate 𝐻𝐻(𝑋𝑋 > 𝑌𝑌), coefficients 𝛼𝛼, 𝛿𝛿 can be replaced with 
any positive number; 

- if 𝑚𝑚 = 𝑛𝑛, 𝛼𝛼 + 𝛾𝛾 = 0, then 𝐻𝐻(𝑋𝑋 ≥ 𝑌𝑌) = 0; 

- if 𝑚𝑚 = 𝑛𝑛, 𝛽𝛽 + 𝛿𝛿 = 0, then 𝐵𝐵(𝑋𝑋 > 𝑌𝑌) = 0. 

𝑡𝑡21 = (3, 5, 1, 1); 𝑡𝑡32 = (2, 4, 1, 1); 43 = 2, 4, 1, 1;  𝑡𝑡54 = 3, 5, 1, 1.  

𝐹𝐹(𝑁𝑁1) ∑((𝑐𝑐𝑚𝑚)𝑖𝑖𝑖𝑖𝑛𝑛𝑖𝑖𝑖𝑖 + 𝑃𝑃𝑖𝑖𝑖𝑖𝑡𝑡𝑖𝑖𝑖𝑖
𝛴𝛴 ) = (4900, 5100, 25, 25) + (5452, 11484, 2333, 2973)

𝑖𝑖,𝑖𝑖
= (10352, 16352, 2958, 2998) 

 

𝜆𝜆1 = 𝜆𝜆(𝐺𝐺1) = ∑(𝑐𝑐𝑚𝑚)𝑖𝑖𝑖𝑖𝑛𝑛𝑖𝑖𝑖𝑖
𝑖𝑖,𝑖𝑖

(𝑁𝑁1) + ∑ 𝑃𝑃𝑖𝑖𝑖𝑖𝑡𝑡𝑖𝑖𝑖𝑖
𝛴𝛴

𝑖𝑖,𝑖𝑖
(𝑁𝑁1 ∪ �̃�𝑁1) = (4900, 5100, 25, 25). 

 
 

𝜆𝜆2 = 𝜆𝜆(𝐺𝐺2) = ∑(𝑐𝑐𝑚𝑚)𝑖𝑖𝑖𝑖𝑛𝑛𝑖𝑖𝑖𝑖
𝑖𝑖,𝑖𝑖

(𝑁𝑁2) + ∑ 𝑃𝑃𝑖𝑖𝑖𝑖𝑡𝑡𝑖𝑖𝑖𝑖
𝛴𝛴

𝑖𝑖,𝑖𝑖
(𝑁𝑁2 ∪ �̃�𝑁2) = (6020, 6480, 102, 130) 

The calculations for vertex 3–13 are made in 
an analogous manner.
Step k-1

We select a vertex to be branched. Because 
vertex 2 has the lowest estimate value, it is 
branched, as a result of which we obtain vertex 
12 by adding the OD pair (2,4) to set N2. 
Step k

We select a next vertex to be branched. Vertex 
13 has the lowest lower bound estimate of the ob-
jective function and also has an empty set of OD 
pairs. Given all this, the optimal railroad blocking 
plan consists of the following direct OD pairs N 
= {(1,3), (2,4), (3,6)}, and the value of the ob-
jective function is F = (9086, 11016, 663, 853) 
wagon-hours.

CONCLUSIONS

In a general case, wagon flows can be man-
aged in an environment of approximate initial 
data. These data do not have specific values, but 
can be classified into certain confidence intervals. 

In this paper, was presented a model for plan-
ning wagonload freight transport in which the 
numbers of wagons, wagon-hour savings and 

wagon-hours of accumulation were given by (L – R) 
fuzzy intervals. The fuzzy objective function opti-
mization algorithm developed in this study is based 
on the branch-and-bound method, with bound esti-
mates also presented as (L – R) fuzzy intervals. The 
estimates are compared, and the smallest estimate 
is chosen using four “possibility/necessity of fuzzy 
event” indices. In the case of (L – R) fuzzy intervals, 
these indices are determined by finding the points of 
intersection of their membership functions.

In real-life practice, the algorithm proposed in 
this paper is particularly useful for solving large-
scale problems. Calculations can be done taking 
into account poorly formalized maintenance fac-
tors by using dialogue at the elimination stage. 

Importantly, the algorithm allows to evalu-
ate the optimality of solutions obtained using 
any other method of planning wagonload freight 
transport.
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